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Abstract

Abusive head trauma (AHT) is the leading cause of traumatic brain injury in children

under 2 years of age and a diagnosis requires careful consideration of the history of the

child, physical examinations, and image findings. Spinal injuries have also been have

also been observed in patients with abusive head trauma but have been less clearly

characterized as they are often overlooked or not considered, particularly in nonfatal

cases. The issue of identifying spine injuries is important as there are currently

conflicting guidelines provided regarding the role of spine imaging in suspected AHT.

This study aims to assess the relationships between spinal injuries, including spinal

subdural hemorrhages (sSDH) and Abusive Head Trauma (AHT) as well as other

clinical factors, using data obtained retrospectively through the Child Abuse and

Protection Network (CAPNET) with information on children under the ages of 10

from 11 hospitals across the United States.

Generalized linear mixed effects model (GLMM) and generalized estimating equa-

tions models (GEE) were used to account for the hospital clustering effect; however,

exploratory analysis of the data revealed issues of separation in the data which in-

troduces issues of convergence and estimation in these models. To address this, we

considered penalized versions of both types of models and evaluated the methods and

effect it has on dealing with the separation of data. We considered two covariance

structures for the GEE model and both resulted in comparable odds ratios and we

observed a significant effect of intracranial subdural hemorrhage on the odds of having

a spinal subdural hemorrhage after adjusting for other covariates. In the penalized



GLMM model, we also observed a significant effect of having an intracranial subdu-

ral hemorrhage on the odds of having a spinal subdural hemorrhage. Note that the

interpretation of the GEE models is at the population level while the GLMM model

is at the cluster-specific level. These results may assist clinicians in discerning when

to perform spinal imaging when dealing with suspected abusive head trauma cases.



Chapter 1

Introduction

Until Every Child Is Well.

Abusive head trauma (AHT) is the leading cause of traumatic brain injury in

children under 2 years of age with an estimated mortality of 15-25% (Arabinda K.

Choudhary, Ishak, Zacharia, & Dias (2014)). There is no clear cause for abusive

head trauma and so a diagnosis requires careful consideration of the history of the

child, physical examinations, and image findings. Throughout several studies and the

work of various clinicians, cranial injuries such as intracranial subdural hemorrhages,

retinal hemorrhages, rib and classic metaphyseal fractures have been shown to be

highly associated with abusive head trauma (Arabinda K. Choudhary et al. (2014),

Rabbitt et al. (2020)). Spinal injuries have also been have also been observed in

patients with abusive head trauma but have been less clearly characterized as they are

often overlooked or not considered, particularly in nonfatal cases (Arabinda Kumar

Choudhary, Bradford, Dias, Moore, & Boal (2012)). The lack of consideration might

be due to the lack of a routine MRI procedure with respect to the spine in potential

abusive head trauma cases which has prompted various conversations on the utility

of MRI imaging as well as the utility of whole-spine vs cervical spine MRI imaging.
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The issue of spine imaging is important as there are various guidelines regarding

spine imaging in suspected AHT. The American College of Radiology (ACR) states

the MRI of the cervical spine is “usually appropriate” in suspected AHT, while whole-

spine MRI “may be appropriate” (Wootton-Gorges et al. (2017)). In contrast, guide-

lines in the United Kingdom (“The radiological investigation of suspected physical

abuse in children | The Royal College of Radiologists — rcr.ac.uk”) and a consensus

statement published in Pediatric Radiology in 2018 recommend routine whole-spine

MRI in suspected AHT cases (Arabinda Kumar Choudhary et al. (2018)).

Due to recent findings from a handful of small single-center retrospective studies in

the last 15 years on spinal injuries in abusive head trauma, this has prompted discus-

sion among experts in child abuse about the need for more multicenter, hypothesis-

driven studies in order to better understand the mechanisms of spinal subdural hem-

orrhages (sSDH) in children evaluated for abusive head trauma (Arabinda Kumar

Choudhary et al. (2012), Arabinda K. Choudhary et al. (2014), Rabbitt et al.

(2020)).

In a single-center retrospective study of the incidence of spinal injury on MRI

among children less than 5 years of age who underwent evaluation for AHT in the US,

29/47 (62%) of children who were diagnosed with AHT and had undergone spine MRI

were found to have spinal abnormalities (Rabbitt et al. (2020)). Of the spinal injuries

described in the study, sSDH was the only injury type associated with the combination

of retinal hemorrhages, a diagnosis of AHT and a mechanism of injury consistent

with acceleration/deceleration forces without impact, such as shaking (Rabbitt et al.

(2020)).

Those who question the utility of whole-spine MRI in clinical practice contend

that the identification of sSDH infrequently alters clinical management and may only

represent the redistribution of intracranial subdural hemorrhages but sSDHs could

lead to complications from spinal cord compression. They also argue that additional
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imaging is costly and prohibitive. In contrast, those in support of spine MRI point

to the potential forensic implications of identifying sSDH if it provides incremental

accuracy for a diagnosis of abuse and help us better highlight injury severity as well

as elucidate the mechanism of abusive injury. For example, one study found an asso-

ciation of sSDH and the combination of non-contact head injury, retinal hemorrhage,

and a diagnosis of AHT (Rabbitt et al. (2020)). As such, further investigation is

needed to explore the clinical factors often looked at in children evaluated for abu-

sive head trauma and assess their association with the presence of spinal subdural

hemorrhages to better assist in providing care for this vulnerable population.

1.1 Study Objectives

The overarching objective of the study was to assess the relationships between spinal

injuries, including spinal subdural hemorrhages and Abusive Head Trauma (AHT) as

well as other clinical factors, using data obtained retrospectively through the Child

Abuse and Protection Network (CAPNET) with information on children under the

ages of 10 from 11 hospitals across the United States.

The specific aims of our study are as follows:

• Compare the rates of spinal imaging in all patients with intracranial injury by

age, injury severity, level of concern for abuse, and concurrent injury types.

• Describe the incidence proportion of spinal injuries (including subdural hemor-

rhage (sSDH), epidural hemorrhage (sEDH), subarachnoid hemorrhage (sSAH),

ligamentous or spinal Cord injury) according to the levels of AHT concerns.

• Examine the relationship of spinal subdural hemorrhage with other factors,

including intracranial hemorrhage (presence vs absence), the severity of injury

presentation (Glascow Coma Score, endotrachial intubation), clinical and non
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clinical markers of shaking (retinal hemorrhages, rib fractures, confession of

shaking).



Chapter 2

Methods

2.1 Study Population

The study population included children <2 years old who underwent CT/MRI (in-

cluding fMRI) of the brain and MRI spine as part of their evaluation for AHT. A

majority of abusive head trauma presents in those less than 2 years old so we wanted

to examine this group in particular. We further excluded any child that had no

CT/MRI head imaging as we needed brain imaging in the diagnosis of abusive head

trauma. We also excluded no intracranial injury for a similar reason and excluded

those that had medical conditions that predisposed the child to injury since disorders

such as glutaric acidemia could make interpretation of findings difficult and lastly,

we excluded neuroimaging and spine imaging results that raised concern for possible

spine injury as we wanted only definitive findings. The consort diagram below shows

the participants composition with an analysis cohort of size n = 887.
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Figure 2.1. Consort diagram

2.2 Data

The data comes from the Child Abuse and Protection Network (CAPNET) and con-

tains information on 6,737 children under the ages of 10 from 11 hospitals across the

United States between February 2021 and September 2022 (Kratchman et al. (2022)).

CAPNET is a multi-center, federally-funded network dedicated to promoting child

abuse research. CAPNET has been collecting data since February 1st, 2021 for chil-

dren <10 years old who undergo sub-specialty evaluation by child abuse practitioners

for physical abuse across 11 pediatric centers. At each site, completed child physical

abuse consultations are reviewed for eligibility criteria by either participating clini-

cians or trained data collectors. The eligibility criteria states that a case is eligible

for inclusion if: 1) age <10 years at the start of the encounter, 2) a clinical evaluation
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performed by a CAP during the enrollment period due to recent concerns (within 1

month) for suspected physical abuse, and 3) the patient was physically seen within

a CAPNET hospital system, including those evaluated in outpatient clinics, emer-

gency departments, and inpatient wards. A clinical evaluation is defined to have

occurred when a child abuse specialist documents an assessment of abuse or and/or

recommendations for the evaluation or reporting of abuse in the medical record. Data

domains abstracted included reported mechanisms of trauma, presenting neurologi-

cal signs and symptoms, presenting cardiorespiratory symptoms, imaging results for

spine MRI and brain MRI/CT, intracranial injury types, as well as associated in-

juries such as rib fractures, classic metaphyseal lesions, and retinal hemorrhages (See

Appendix A1).

2.3 Outcome of Interest

The outcomes of interest are the spinal injuries identified via MRI/CT which include

spinal epidural hemorrhage (sEDH), spinal subdural hemorrhage (sSDH), spinal sub-

arachnoid hemorrhage (sSAH), ligamentous injury and spinal cord injury. Each one is

coded as a dichotomous outcome with Yes or No as the possible values. The primary

outcome of interest is spinal subdural hemorrhage.

2.4 Statistical Methods

2.4.1 Exploratory Data Analysis

We first compare the rates of spinal imaging in all patients with intracranial injury

by age, injury severity, level of concern for abuse (AHT status), and concurrent

injury types. Fisher exact tests for categorical variables and Kruskal-Wallis tests for

continuous variables will be used.
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Among those patients with spine imaging data, the prevalence proportion of spinal

injuries (including subdural hemorrhage (sSDH), epidural hemorrhage (sEDH), sub-

arachnoid hemorrhage (sSAH), ligamentous or spinal Cord injury) according to the

levels of AHT concerns were summarized. Similarly, fisher exact tests for categorical

variables and Kruskal-Wallis tests for continuous variables will be used. Finally, we

also describe the prevalence of spinal SDH with other factors, including intracranial

hemorrhage (presence vs absence), the severity of injury presentation (GCS), clinical

and non clinical markers of shaking (retinal hemorrhages, rib fractures, confession of

shaking). Fisher exact tests for categorical variables and Kruskal-Wallis tests for con-

tinuous variables will be used. All tables will display (median (IQR)) for continuous

variables due to the skewness of our variables and (%) for categorical variables. Two

sided p-values were reported with a p < 0.05 considered statistically significant.

2.4.2 Logistic Regression

In order to examine the relationship between relevant clinical characteristics and

spinal subdural hemorrhage (dichotomous outcome: one either experiences the spinal

subdural hemorrhage or not), a logistic regression could be considered and such a

model takes the following form:

logit(P (Yi = 1|X)) = log
 P (Yi = 1|X)

1 − P (Yi = 1|X)

 = eXT β

1 + eXT β

where we have used the logit link function with Yi as the outcome of interest, spinal

subdural hemorrhage, with 0 indicating no presence and 1 indicating presence, X is

the design matrix of size n × (p + 1) for n observations and β ∈ Rp+1 is the vector of

coefficients for the p covariates and intercept. After fitting, the resulting β coefficients

are then interpreted as the log(Odds Ratios) of the event occurring in the exposed

group versus unexposed group.
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2.4.3 Adjusting for Clustered Data

Given the data were collected across multiple hospital sites or clustered data, we

consider multilevel logistic mixed effects (also known as Generalized Linear Mixed

Effects Models (GLMMS)) and Generalized Estimating Equations (GEEs) which each

account for the clustering effect of hospital site. It is important to note that for

nonlinear modeling as is in our case (status of spinal subdural hemorrhage is binary),

the interpretations of the two will not be the same. For a mixed effects model,

the interpretation will be at the clustering level while in a generalized estimation

equations model, the interpretation is at the population averaged level. Although

these two methods won’t be exactly comparable, fitting both types of models gives

us more options to choose from to explore the relationship between clinical factors

and spinal subdural hemorrhages in a clustered setting.

2.4.4 Generalized Estimating Equations

We first consider implementation of Generalized Estimating Equations (GEE) intro-

duced by Liang & Zeger (1986) that accounts for the correlation between patients.

The GEE approach as its name suggests is motivated by “estimating equations”. In

this section, we use the following notation: Yij denotes the outcome (sSDH status)

for the ith hospital and jth patient. Associated with each response Yij is a p×1 vector

of covariates, Xij. As GEE models are marginal models, they have the following

three-part specification:

1. The conditional expectation of the response E(Yij|Xij) = µij, depends on the

covariates Xij through a known link function

g(µij) = ηij = XT
ijβ
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2. The variance of each Yij given covariates, depends on the mean based on

V (Yij|Xij) = ϕv(µij)

where v(µij) is a known variance function and ϕ is a scale parameter.

3. The conditional within-subject association among vector of repeated responses,

given covariates, is a function of a vector of association parameters, α (and also

depends on the, µij)

And the model specification with binary response (primary outcome) looks like this:

1. Logistic regression:

Logit(µij) = XT
ijβ

2.

V (Yij|Xij) = µij(1 − µij)

3. OR(Yij, Yjk) = αjk (unstructured odds ratios) where

OR(Yij, Yjk) = Pr(Yij = 1, Yik = 1)Pr(Yij = 0, Yik = 0)
Pr(Yij = 1, Yik = 0)Pr(Yij = 0, Yik = 1)

GEEs can be thought of as arising from a minimization of the residuals ei = Yi −µi(β)

N∑
i

(Yi − µi(β))T V −1
i (Yi − µi(β))

with respect to β and Vi is treated as known and µi(β) is the vector of mean response

with elements µij(β) = g−1(XT
ijβ). Then it can be shown that if a minimum of the

above function exists, it solves the following:

U(β, α) =
n∑

i=1
D′

iV
−1

i (yi − µi) = 0
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where Vi is the “working” covariance matrix which serves as an approximation for

the true covariance matrix, Di = ∂µi

∂β
is the “derivative” matrix that transforms the

original units of Yki to the units of g(µki). Then, this system of equations would then

be solved in some iterative fashion if no closed-form solution exists. One advantage

of Generalized Estimating Equations is that we can avoid distributional assumptions

about Yi and estimators of β̂ are always consistent and asymptotically normal even

if the covariance of Yi has been misspecified.

2.4.5 Multilevel Logistic Mixed Effects

We also consider a two-level Logistic Mixed Effects model that accounts for patient

clustering within hospitals by incorporating a random effect. We describe the model

in the following way. Let Yki be the binary response taking on values 0 or 1 for

diagnosis of spinal subdural hemorrhage of the i-th case (level 1 unit) in the k-th

hospital (level 2 unit). With each response, we have a vector of p covariates, Xki.

We can specify this model using a three part specification as laid out in Fitzmaurice,

Laird, & Ware (2011):

1. We condition on the random effect bi such that the Yki are independent with a

Bernoulli distribution and V ar(Yki|bi) = E(Yki|bi){1 − E(Yki|bi)}

2. We model the conditional mean of Yki with fixed and random effects via:

log
{
P(Yki = 1|bi)
P(Yki = 0|bi)

}
= Xkiβ + bi

3. The random effect bi is assumed to have a normal distribution with mean 0 and

variance σ2
b . Note here that the random effects can have any distribution but

for computational convenience, we will assume a normal distribution with mean

0 and variance σ2
b .
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Estimation and inference can then be conducted using likelihood based approaches.

One approach is to treat the random effects as unobserved latent variables and in-

tegrate them out but for binary outcomes, this integral has no closed-form solutions

so numerical procedures are used. For instance, the package lme4 by Bates, Mäch-

ler, Bolker, & Walker (2015) uses an adaptive Gauss-Hermite quadrature likelihood

approximation.

2.4.6 Penalized Methods to Address Data Separation Issues

Initial exploratory analyses of the data revealed there to be multiple instances of

complete or quasi-complete separation within the data which can cause issues with

inference as likelihood approaches breakdown. Complete separation occurs when

there exists some vector of coefficients β such that the response yi = 1 whenever βxi

> 0 and yi = 0 whenever βxi ≤ 0 (Albert & Anderson (1984)). Take for example, a

toy dataset (x1, y1), (x2, y2), (x3, y3), (x4, y4) = (−4, 1), (−3, 1), (2, 0), (1, 0) such that

we can draw a straight line between these four points to completely separate them.

Quasi-complete separation is a related problem that occurs when there exists some

vector of coefficients β such that βxi ≥ 0 whenever the response yi = 1 and βxi ≤ 0

whenever yi = 0 and equality holds for at least one case in each category of the

dependent variable. In our dataset this looks something like the following 2x2 table

where the status of having experienced a central nervous system injury limited to

small focal injury directly beneath a skull fracture (CNS Injury) is the rows and

the status of spinal subdural hemorrhage is on the columns. Observe that we have

observations in each cell except in the case where an observation has both the central

nervous system injury and has spinal subdural hemorrhage:
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Table 2.2. Example of quasi-complete separation in CAPNET data

Having separation in our data is not a surprise as the variables we are working with

are often rare events in a very specific population of children. The data separation

results in convergence issues such that one or more estimated coefficients might tend

towards infinity (positive or negative) meaning predicted probabilities are either 1

or 0 since the data with separation fits too well (Clark, Blanchard, Hui, Tian, &

Woods (2023), Allison (2008)). Consider the following figure from Allison (2008)

which shows the log-likelihood as a function of beta under complete separation. We

want to maximize the log-likelihood which is at 0 but in order to get as close as

possible, it requires beta to go towards infinity.

Figure 2.3. Log-likelihood as a function of the slope under complete separation

There are a variety of ways statisticians have approached this issue of separation.
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One possible approach that Heinze & Schemper (2002) mentions is omitting the

variables that cause the separation but they also raise concerns that omission of

this “usually strong and therefore important risk factor” provides no information and

does not allow adjusting effects of other risk factors for the effect of this variable. The

approach we will consider is through penalization of the models we explored above.

2.4.7 Penalized Generalized Estimating Equations

A paper published recently proposed a penalized GEE by including a “Firth-type”

penalty term to address bias and separation in small or sparse longitudinal binary

data (Mondol & Rahman (2019)). Geroldinger, Blagus, Ogden, & Heinze (2022)

demonstrated this penalized GEE substantially improved convergence compared to

ordinary GEE, while showing a similar or even better performance in terms of accu-

racy of coefficient estimates and predictions. The Firth penalty was originally used

in logistic regression models which implements a penalized maximum likelihood es-

timation, originally with the aim of reducing bias in logistic regression with small

samples (Firth (1993)). It can be shown that this method by Firth always yields

finite estimates under complete or quasi-complete separation (Heinze & Schemper

(2002)).

Firth essentially proposes the following penalized likelihood given:

L(β)∗ = L(β) · |I(β)| 1
2

where I(β) is the information matrix evaluated at β. Firth (1993) demonstrated

the asymptotic consistency of this penalized likelihood and demonstrated that the

O(n−1) bias of the maximum likelihood estimates β̂ is removed. Using this penalized

likelihood, we can then derive the log-likelihood and obtain the following penalized

score equations.
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U(βk)∗ = U(βk) + 1
2trace[I(β)−1 ∂I(β)

∂βk

]

where

U(βk) = ∂ℓ(βk)
∂βk

= 0

is the score equation for βk. This approach ultimately has the effect of reducing bias

as well as shrinking or “penalizing” coefficients such that the coefficient estimates and

standard errors are usable and interpretable.

We chose to use this method in particular not only because its novelty will allow

us to learn something new but there is an available R package that we can conve-

niently use (Mondol & Rahman (2019)). To briefly outline their methodology, they

state that “the GEE is considered to be an extension of likelihood score equation

for correlated response” and so they treat the GEE as if it were a likelihood score

equation. Then, they add a Firth-type penalty to the following equation for the r-th

regression coefficient:

U∗
r (β, α) = U(β, α) + A∗

r(β, α) =
n∑

i=1
D′

iV
−1

i (yi − µi) + 1
2trace[I(β, α)−1 ∂I(β, α)

∂βk

] = 0

and this can be solved in the typical ways using iterative approaches. In this paper,

they also consider a small-sample bias correction to the variance estimator using the

proposed method by Morel, Bokossa, & Neerchal (2003) which not only reduces bias,

but reduces type I error rate and also guarantees positive definiteness of the estimated

variance covariance matrix. To run this penalized GEE, we will be using the GEEfirth

R package (Mondol & Rahman (2019)).

We will also further assess the robustness of our results by using different covari-

ance assumptions and comparing the sets of estimates. Due to limitations within the

GEEfirth package, we will consider two different covariance assumptions: indepen-

dence and exchangeable. These two characterize the correlation within the cluster in
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different ways. For the independence covariance matrix, the covariance matrix will

have some homoskedastic variance σ2 on the diagonal and 0s on the off-diagonals.

For the exchangeable matrix, we have some homoskedastic variance σ2 and the same

correlation ρ on the off-diagonals. Note that the choice of covariance structure usu-

ally requires some thought on choosing the appropriate one. One might choose an

independent covariance structure if they assume none of the responses are correlated

or choose an exchangeable covariance when the responses from the same cluster are

equally correlated, regardless of distance between the responses. One could also use

the quasi-information criterion from Pan (2001) to select the best covariance, how-

ever, the package we are using has not implemented QIC measures so we show both

structures to compare.

2.4.8 Penalized Multilevel Logistic Regression

We also consider penalized multilevel logistic regression to address issues of separa-

tion. We adopt the approach used by Clark et al. (2023) in which they consider

a ridge penalty that penalizes based on the sum of the squared magnitudes of the

coefficients as well as according to some tuning parameter (Hoerl & Kennard (1970)).

Ridge regression was first proposed by Hoerl & Kennard (1970) in their paper,

“Ridge Regression: Biased Estimation for Nonorthogonal Problems”. This method is

similar to ordinary least squares, but a shrinkage penalty is added on when estimating

the coefficients as defined below.

Residual Sum of Squares + λ
p∑

j=1
β2

j =
n∑

i=1
(yi − β0 −

p∑
j=1

βixij)2 + λ
p∑

j=1
β2

j

where λ ≥ 0 is called the tuning parameter that is not determined automatically.

From the above equation, we can see that we still want to make the residual sum of

squares as small, similar to ordinary least squares, but now we also must consider the
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shrinkage penalty which has the effect of making β̂1, β̂2, . . . , β̂p shrink towards zero.

This shrinkage penalty is based on the ℓ2 norm of the coefficients (||β||2 =
√∑

β2
j )

which is the distance between the estimates from 0. The tuning parameter, λ, then

tunes the relative influence of these two terms on the estimates. As λ → ∞, the

coefficients approach zero and when λ = 0, we are simply minimizing the residual

sum of squares. This idea can then be extended to the logistic regression case, see

Cessie & Houwelingen (1992).

We employ Clark et al. (2023)’s approach because currently there are no R pack-

ages that have implemented the Firth penalty in multi-level logistic regression. On

the other hand, there is code to apply the ridge penalty in multilevel logistic regres-

sion since it can be viewed in the Bayesian sense (Clark et al. (2023)). It is equivalent

to assuming a weakly informative prior on the fixed effects, where the choice of prior

corresponds to a particular penalty function. For ridge penalty, it is equivalent to

assuming independent normal prior distributions for the coefficients with variance set

to the inverse of the tuning parameter as shown by Goldstein (1976).

There are several strategies for choosing the variance in the normal prior. Lemoine

(2019) provides a guide to weakly informative priors where one way is to use domain

expert knowledge by surveying the literature and experts to get a prior distribution.

We consider the two-step approach used in Adenuga et al. (2018) in which they

first apply Firth’s penalized logistic regression without consideration of the clustered

nature of the data to inform the priors to be used in the second step. In the second

step, variance of the normal priors were chosen to be twice the variance of the largest

parameter estimate. To test the sensitivity, we will in addition consider normal priors

with mean 0 and 4 variances: 1, 4, 9, 16. The smaller the variance, the more we think

the parameter estimates lie within a smaller range or in other words, a stronger degree

of penalization. Note that these priors are acting on the log scale so for a parameter

to have a normal distribution with variance 4, plus or minus 2 standard deviations
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away is (-4, 4) which is quite large on the logit scale which equals (exp(-4), exp(4))

= (0.018, 54.59) on the odds scale. By treating more extreme values as unlikely, a

weakly informative prior helps with locating effect estimates in the model of interest

and may help with convergence when (quasi)-complete separation occurs (Kimball,

Shantz, Eager, & Roy (2018)). We can use the R package blme to fit this penalized

multi-level logistic regression (Chung, Rabe-Hesketh, Dorie, Gelman, & Liu (2013)).

As a brief aside, Gelman, Jakulin, Pittau, & Su (2008) provides more insight into

using other weakly informative priors in logistic regression such as t-distributions or

Cauchy distributions. They recommend using a t-distribution with either 1 or 7 de-

grees of freedom and a scale parameter of 2.5 with the argument being the scale of 2.5

is large enough to allow the largest odds ratios likely to occur in most applications

yet small enough to penalize large coefficient values, avoiding infinite parameter es-

timates. However, due to time constraints as well as simplicity, we will only explore

using a Normal prior while keeping in mind that a Bayesian approach brings about a

lot of flexibility and nuances in model creation.



Chapter 3

Results

3.1 Descriptive Statistics

3.1.1 Spinal imaging
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Table 3.1. Rates of Spinal Imaging by Clinical Characteristics.
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In the total study population (n = 887), 387 (44%) received some form of spinal

imaging with a median age of 4 months (age ranges from 0 to 24 months.) A majority

of the study population was less than 6 months old (68%) and there is no indication

of significant differences in spinal imaging status across age groups. In the high

concern of abusive head trauma group (n = 279), the majority had imaging done

(76.3%). In the moderate concern of abusive head trauma, it was more balanced

with 52% having had no imaging and 48% having had imaging performed. In the

no / low concern of abusive head trauma, we had 84.5% having no advanced spine

imaging performed. In the >20 / too numerous to count groups for both eyes, we see

a majority had spine imaging performed (roughly 80% each). The median number

of rib fractures was 0 in both groups. 42 cases had atleast one classic metaphyseal

lesion. 31 of those had imaging performed while 11 (26.2%) did not have spine

imaging. Glascow Coma Scores were obtained for 591 cases with the majority being

in the 13-15 range (n=437). For those with a GCS of 8 or lower or were intubated,

75 (71.4%) had spine imaging done. We had 172 cases that required endotrachial

intubation and 121 (70.3%) had spine imaging done. All univariate analyses suggests

significant differences in spine imaging status except for the History of Inflicted /

Abusive Trauma. Overall, these results suggest different clinical characteristics for

those who had spinal imaging performed versus those with advanced spine imaging

with those that have done spine imaging having more severe clinical characteristics.
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3.1.2 Summary of spinal injur(ies) based on spinal imaging

data

Table 3.2. Spine Injuries by History of Trauma and Level of Concern for Abuse.

Bolded values indicate significance.

In the accidental history of trauma, we see that 5 experienced a spinal epidural

hemorrhage, 15 had a spinal subdural hemorrhage, 1 had a subarachnoid hemorrhage,

10 had a ligamentous injury, and 3 had a spinal cord injury. Only spinal subdural

hemorrhage was significantly associated with an accidental history of trauma. In

the inflicted / abusive group, only two had suffered ligamentous injuries. In the no

history of trauma group, 5 experienced a spinal epidural hemorrhage, 28 had a spinal

subdural hemorrhage, 2 had a subarachnoid hemorrhage, 20 had a ligamentous injury,

and 2 had a spinal cord injury.

According to levels of concern of abusive head trauma, the high concern subset had

34 cases with spinal subdural hemorrhage and 29 cases of ligamentous injury. In the

moderate concern group, 7 had spinal subdural hemorrhage and 3 had ligamentous

injury with no other spinal injuries. In the no to low concern group, we see 1 had a

spinal epidural hemorrhage and 2 suffered from a spinal subdural hemorrhage. It is

important to note here that spine injuries would have been missed if spine imaging
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was not performed and that spine image findings can provide us additional evidence

of trauma in instances when other diagnostic tools are insufficient such as nonspecific

intracranial findings (Rabbitt et al. (2020)). Fisher exact tests also suggests an

association between level of concern for abuse and each spinal injury type respectively.
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3.1.3 Clinical characteristics associated with spine injury

among children with spine MRI

Table 3.3. Clinical Characteristics According to Spinal Subdural Hemorrhage Status

From Table 3.3, we can see differences in the clinical characteristics for those with

spinal subdural hemorrhage and those without. For children who have a spinal subdu-

ral hemorrhage, 42/43 (97.7%) had an intracranial subdural hemorrhage. In roughly
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50% of cases also had greater than 20 retinal hemorrhages in either eye or were too

numerous to count compared to approximately 23% in those without spinal subdural

hemorrhages. The median length of stay was also different in the two groups, with 5

being the median for those without the outcome and 18 for those with the outcome.

The number of right and left retinal hemorrhages were both respectively associated

with spinal subdural hemorrhage status. As well as endotrachial intubation status

and hospital and ICU length of stay (days). Overall, these results suggest patients

who experience a spinal subdural hemorrhage tend to also display more severe clinical

characteristics.

3.2 Model Results

The clinical factors or covariates that are considered relevant in assessing the rela-

tionship with spinal subdural hemorrhage are as follows:

• Intracranial subdural hemorrhages

• Classic Metaphyseal Lesions

• CNS Injury

• Glascow Coma Score

• Endotrachial Intubation

• Number of rib fractures

• Number of right retinal hemorrhages

• Spine ligamentous injury

• Age (months)

• History of accidental /inflicted / abusive trauma

• Reported mechanism of inflicted trauma: Shaking / Hit/kick/strike

• Reported mechanism of accidental trauma: Fall / Hit with object / Collision

with an object
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• Highest level of care

• Hospital Length of Stay

Note: we dropped some variables from our modeling approach due to concerns of

collinearity. For example, we have two variables for retinal hemorrhages in the right

and left eye. Cross tabulations showed most observations lied on the diagonal which

suggested that if a child had a certain number of retinal hemorrhages in one eye, they

also had a similar severity in the other eye. So we decided to only incorporate the

number of retinal hemorrhages in the right eye. Similarly, the correlation between

hospital length of stay and ICU length of stay was quite high at 0.76 so we chose to

only use hospital length of stay. A few variables, Perpetrator of confession and Chok-

ing / Strangulation, that are potentially relevant were excluded due to the incomplete

or large amount of missing data.

3.2.1 Generalized Estimating Equations Results

We fitted three GEE models, one unpenalized and two using a Firth type penalization.

We used the geepack package in R (Halekoh, Højsgaard, & Yan (2006)) to fit the un-

penalized model with results being shown in Appendix A2. In the unpenalized model,

we considered an exchangeable covariance structure and we obtained parameter esti-

mates near the boundaries for odds (0 to +∞), leading to uninterpretable results. On

the other hand, with the penalized GEEs (exchangeable and independent covariance

structure) displayed in Table 3.4 with Odds Ratios and 95% confidence intervals, we

see the effect of the Firth penalization in attenuating the odds closer to 1 as well as

providing sensible confidence intervals. The GEE model with an exchangeable co-

variance structure had identified having an intracranial subdural hemorrhage, having

6-20 right retinal hemorrhages, and hospital length of stay as significant variables.

Patients with an intracranial subdural hemorrhage have 6.4 times the odds of spinal

subdural hemorrhage versus a patient without an intracranial subdural hemorrhage
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after adjusting for other covariates. Patients with 6-20 right retinal hemorrhages

have 2.8 times the odds of spinal subdural hemorrhage versus a patient with no right

retinal hemorrhages and for each additional day spent in the hospital, the odds of a

spinal subdural hemorrhage were 1.033 times higher.

The independent model had identified having an intracranial subdural hemor-

rhage and hospital length of stay as significant covariates. This model estimated that

patients with an intracranial subdural hemorrhage have 6.9 times the odds of spinal

subdural hemorrhage versus a patient without an intracranial subdural hemorrhage

after adjusting for other covariates. For each additional day spent in the hospital,

the odds of a spinal subdural hemorrhage were 1.036 times higher. The magnitude

and direction of the odds ratios were comparable in both models. We omitted look-

ing at an AR-1 covariance structure since our data is not longitudinal so it did not

make sense to try to account for time in the covariance structure. It appears that

the results are not extremely sensitive to choice of covariance structure as the coef-

ficient estimates and 95% confidence intervals are roughly similar with the width of

standard errors in the independent covariance structure being often wider. It would

be useful to explore more structures if possible, but one good thing about GEEs is

that inference is consistent even when we have misspecified the correlation structure.
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Table 3.4. Penalized GEE models assessing the relationship of sSDH status with

clinical factors. * indicate statistical significance.

3.2.2 Multilevel Logistic Regression Results

We first started with the standard multilevel logistic model fitted using glmer from

the lme4 package (Bates et al. (2015)). Because there is generally no closed form

to calculate the likelihood function of a mixed effects model, an optimizer is used

to approximate the solution. When trying to fit the model, the default optimizer
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“bobyqa” failed to converge due to the separation exhibited in the data. While we

were still able to get parameter estimates (see Appendix A3), these numbers should

not be trusted due to the separation of our data and lack of convergence in our model.

For example, the category level “1-5 right retinal hemorrhages” has an extremely large

upper confidence interval that’s written as Inf as R was unable to computationally

handle that number. And as it so happens, this category exhibited separation (see

Table 3.3). We then also considered alternative optimizers to see if it was potentially

an optimizer issue so we considered L-BFGS-B and Nelder Mead, two other often used

optimizers in these problems. They also failed to converge, indicating the potential

issues that can arise when separation exists in the data.

We then used the two-step approach as outlined previously and placed Normal

priors on the fixed effects with mean 0 and variance of 4.34, leading to a weakly infor-

mative prior. These results are displayed in Table 3.5. As we can see, the estimates

for the Odds ratios and their 95% confidence intervals have been penalized by the

prior we placed on the fixed effects. If we look at the category level “1-5 right retinal

hemorrhages”, its confidence interval ranges from 0.1 to 1.5. In this model, we had

only one significant covariate which was intracranial subdural hemorrhage status. It

is also important to remember that the interpretation of coefficients in a multilevel

logistic model no longer have a marginal interpretation, but rather conditional with

respect to the clustering. Fitzmaurice et al. (2011) explains “the fixed effects param-

eters in a two-level model for discrete data represent changes in the (transformed)

mean response, for a single-unit change in the corresponding covariate, for any given

level 2 unit” where in our case, the level 2 unit is the hospital site. So for example,

those that experience an intracranial subdural hemorrhage have 4 times the odds of

spinal SDH versus patients without after adjusting for other covariates and hospital

effect. Lastly, we computed the intraclass correlation coefficient to be 0.11 which

suggests the within-cluster variation is greater than the between-cluster variation.
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Appendix A4 shows the results of considering other weakly informative priors

with variances of 1,4, 9, 16 respectively. A variance of 1 is the most informative

and 16 is the least informative. Here, we can see that the estimates are generally in

agreement in magnitude and direction. The effect of the weakly informative prior also

demonstrates itself in the width of the confidence intervals. In the model with variance

1, the confidence intervals are tighter since we placed our initial belief that the beta

estimates following a tighter normal distribution. On the other hand, the one with

variance 16 has larger widths, reflecting the belief that our parameters follow a normal

with a larger standard deviation. The three models suggested intracranial subdural

hemorrhage was significant while the first model had a confidence interval ranging

from 0.8 to 5.1. These results suggest the choice of the weakly informative prior is

not too sensitive as long as the prior is weakly informative. What weakly informative

means is a highly debatable topic that can be its own thesis topic. We refer the

interested read to Gelman et al. (2008) who provides general guidelines to choosing

weakly informative priors. The results demonstrates that they are not entirely robust

to changes in the tuning parameter so there needs to be careful consideration when

it comes to fitting these types of models.
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Table 3.5. Penalized GLMM assessing the relationship of sSDH status with clinical

factors. * indicate statistical significance.





Conclusion

3.3 Discussion

Complications can arise when complete or quasi-complete separation occurs and leads

to extremely large or small coefficient estimates, making it more difficult to perform

statistical inference. In this thesis, we evaluated various approaches to handling sep-

aration in multilevel models and GEE models that accounted for clustering. We

demonstrated how penalized approaches can be used to address this issue of complete

or quasi-complete separation. There have also been several other approaches sug-

gested to address this issue such as dropping the variables that cause the separation,

collapsing predictor categories, or conducting exact inference using exact logistic re-

gression as it is important to recognize that penalization is not the only way to tackle

this issue (Allison (2008)).

Although the two models we considered accounted for clustering, they have dif-

ferent interpretations when it comes to the regression coefficients which is important

to consider when trying to address our study objectives. For a multilevel logistic

model, the interpretation is on the cluster level while in the GEE model, it is at the

population level. Given that we are primarily interested in the regression coefficients

themselves and not necessarily the individual effects, the use of the penalized GEE

model seems to make reasonable sense. In addition, our penalized GEE model re-

sults show promising results in dealing with separation in clustered data that echo
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results of previous papers that implemented this method (Mondol & Rahman (2019),

Geroldinger et al. (2022), Mussner (2022)). Due to the promising benefits of this, it

would be beneficial to continue researching into this method. Moreover, the fact that

in the penalized GLMM model, we had to choose a prior might be of concern if we

fail to wisely and strategically choose our priors. As we saw, the choice of prior has

the potential to alter our results.

Overall, the penalized GLMM and GEE models seemed to agree on the association

between having an intracranial subdural hemorrhage and a spinal subdural hemor-

rhage. This supports the theory that spinal subdural hemorrhage is attributed to

the tracking of intracranial blood (Rabbitt et al. (2020), Kemp, Cowley, & Maguire

(2014), Arabinda K. Choudhary et al. (2014)), however this is still an ongoing debate.

Another theory is based on injury to the vessels around the spinal cord and there has

been no resounding evidence for a sole mechanism of spinal subdural hemorrhages

(Rabbitt et al. (2020),Kim & Sim (2015)). However, since our results demonstrate

an association between having an intracranial subdural hemorrhage and spinal sub-

dural hemorrhage and previous literature have suggested intracranial subdural hem-

orrhages are associated with abusive head trauma (Arabinda Kumar Choudhary et al.

(2012)), it can better assist clinicians in discerning when to perform spinal imaging

when dealing with suspected abusive head trauma cases.

3.4 Limitations

There are some limitations to our data that prevent us from making more granular

conclusions. In spine imaging, there is no distinction between whole-spine versus

cervical spine MRI and the data are unable to determine the location of the spinal

subdural hemorrhage. Moreover, the diagnosis of abusive head trauma is done after

collection of the other variables meaning we could not include it in our models as a
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covariate and needed to use other variables such as intracranial subdural hemorrhage

and retinal hemorrhages as proxy variables. And while multi-center research yields

numerous benefits, variability exists between institutions and among providers at the

same institution, particularly with regards to who is referred for a child abuse evalu-

ation and what that child abuse evaluation entails. However, the CAPNet database

is a relatively new endeavor at standardizing the way we collect data on child abuse,

enabling clinicians and researchers alike to better study this unique and vulnerable

population. Moreover, the number of clusters (hospital sites) is small at n = 11

which can lead to invalid estimates and inferences for GEE and multilevel models

(Bell, Morgan, Kromrey, & Ferron (2010)).

3.5 Future Work

In this paper we only considered the ridge penalty for the mixed effects model but

it would be interesting to consider a Lasso penalty which has been implemented in

the glmmLASSO package (Groll & Tutz (2012)) which performs variable selection, but

since the aim of the thesis was inference rather than prediction, variable selection was

not a priority for us. We also only considered a weakly informative prior for the fixed

effects but one could even take a further Bayesian approach by placing priors on the

random effects and performing Bayesian inference (Chung et al. (2013), Kimball et

al. (2018), Abrahantes & Aerts (2012)). There have also been several modifications

to the GEE such as another penalized GEE that performs variable selection by Inan

& Wang (2017) that would be interesting to explore. Simulation studies and a deeper

dive into the impact of small-sample settings would also prove to be a worthwhile

endeavor. There is no one size fits all / unified framework for dealing with (quasi)-

complete separation in clustered data, but it is our hope that this thesis can shed

light onto some ways we can tackle this issue.
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In Chapter 2:
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A1. Data dictionary

In Chapter 3:
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A2. GEE with exchangeable covariance structure assessing the relationship of sSDH

status with clinical factors. * indicate significance.
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A3. Standard GLMM results assessing the relationship of sSDH status with clinical

factors. * indicate significance.
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A4. Penalized GLMMs results assessing the relationship of sSDH status with clinical

factors. Penalized GLMMS had a ridge penalty that corresponded to a normal prior

distribution with a mean of zero and standard deviation for all coefficients in the

model.





References

Abrahantes, J. C., & Aerts, M. (2012). A solution to separation for clustered binary

data. Statistical Modelling, 12 (1), 3–27. http://doi.org/10.1177/1471082x1001200102

Adenuga, A., Mateus, A., Ty, C., Borin, K., Holl, D., San, S., . . . Rudge, J. W.

(2018). Seroprevalence and awareness of porcine cysticercosis across different pig

production systems in south-central cambodia. Parasite Epidemiology and Con-

trol, 3 (1), 1–12. http://doi.org/10.1016/j.parepi.2017.10.003

Albert, A., & Anderson, J. A. (1984). On the existence of maximum likelihood

estimates in logistic regression models. Biometrika, 71 (1), 1–10.

Allison, P. (2008). Convergence failures in logistic regression. SAS Global Forum

2008, 360.

Angel, E. (2000). Interactive computer graphics : A top-down approach with OpenGL.

Boston, MA: Addison Wesley Longman.

Angel, E. (2001a). Batch-file computer graphics : A bottom-up approach with Quick-

Time. Boston, MA: Wesley Addison Longman.

Angel, E. (2001b). Test second book by angel. Boston, MA: Wesley Addison Longman.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-

effects models using lme4. Journal of Statistical Software, 67 (1), 1–48.

http://doi.org/10.18637/jss.v067.i01

Bell, B., Morgan, G., Kromrey, J., & Ferron, J. (2010). The impact of small cluster

size on multilevel models: A monte carlo examination of two-level models with

https://doi.org/10.1177/1471082x1001200102
https://doi.org/10.1016/j.parepi.2017.10.003
https://doi.org/10.18637/jss.v067.i01


44 References

binary and continuous predictors. JSM Proceedings, Section on Survey Research

Methods.

Cessie, S. L., & Houwelingen, J. C. V. (1992). Ridge estimators in logistic regression.

Applied Statistics, 41 (1), 191. http://doi.org/10.2307/2347628

Choudhary, Arabinda Kumar, Bradford, R. K., Dias, M. S., Moore, G. J., & Boal, D.

K. B. (2012). Spinal subdural hemorrhage in abusive head trauma: A retrospec-

tive study. Radiology, 262 (1), 216–223. http://doi.org/10.1148/radiol.11102390

Choudhary, Arabinda K., Ishak, R., Zacharia, T. T., & Dias, M. S. (2014). Imaging of

spinal injury in abusive head trauma: A retrospective study. Pediatric Radiology,

44 (9), 1130–1140. http://doi.org/10.1007/s00247-014-2959-3

Choudhary, Arabinda Kumar, Servaes, S., Slovis, T. L., Palusci, V. J., Hedlund, G.

L., Narang, S. K., . . . Offiah, A. C. (2018). Consensus statement on abusive head

trauma in infants and young children. Pediatric Radiology, 48 (8), 1048–1065.

http://doi.org/10.1007/s00247-018-4149-1

Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A nondegen-

erate penalized likelihood estimator for variance parameters in multilevel models.

Psychometrika, 78 (4), 685–709. http://doi.org/10.1007/s11336-013-9328-2

Clark, R. G., Blanchard, W., Hui, F. K. C., Tian, R., & Woods, H. (2023). Deal-

ing with complete separation and quasi-complete separation in logistic regres-

sion for linguistic data. Research Methods in Applied Linguistics, 2 (1), 100044.

http://doi.org/https://doi.org/10.1016/j.rmal.2023.100044

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80 (1),

27–38. Retrieved from http://www.jstor.org/stable/2336755

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis.

Wiley. http://doi.org/10.1002/9781119513469

Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y.-S. (2008). A weakly informative

default prior distribution for logistic and other regression models. The Annals of

https://doi.org/10.2307/2347628
https://doi.org/10.1148/radiol.11102390
https://doi.org/10.1007/s00247-014-2959-3
https://doi.org/10.1007/s00247-018-4149-1
https://doi.org/10.1007/s11336-013-9328-2
https://doi.org/10.1016/j.rmal.2023.100044
http://www.jstor.org/stable/2336755
https://doi.org/10.1002/9781119513469


References 45

Applied Statistics, 2 (4). http://doi.org/10.1214/08-aoas191

Geroldinger, A., Blagus, R., Ogden, H., & Heinze, G. (2022). An investigation of pe-

nalization and data augmentation to improve convergence of generalized estimat-

ing equations for clustered binary outcomes. BMC Medical Research Methodology,

22 (1). http://doi.org/10.1186/s12874-022-01641-6

Goldstein, M. (1976). Bayesian analysis of regression problems. Biometrika, 63 (1),

51–58. http://doi.org/10.1093/biomet/63.1.51

Groll, A., & Tutz, G. (2012). Variable selection for generalized linear mixed

models by l 1-penalized estimation. Statistics and Computing, 24 (2), 137–154.

http://doi.org/10.1007/s11222-012-9359-z

Halekoh, U., Højsgaard, S., & Yan, J. (2006). The r package geepack for generalized

estimating equations. Journal of Statistical Software, 15/2, 1–11.

Heinze, G., & Schemper, M. (2002). A solution to the problem of sepa-

ration in logistic regression. Statistics in Medicine, 21 (16), 2409–2419.

http://doi.org/10.1002/sim.1047

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 42 (1), 80–86. Retrieved from http:

//www.jstor.org/stable/1271436

Inan, G., & Wang, L. (2017). PGEE: An R Package for Analysis of Longitudi-

nal Data with High-Dimensional Covariates. The R Journal, 9 (1), 393–402.

http://doi.org/10.32614/RJ-2017-030

Kemp, A., Cowley, L., & Maguire, S. (2014). Spinal injuries in abusive head

trauma: Patterns and recommendations. Pediatric Radiology, 44 (S4), 604–612.

http://doi.org/10.1007/s00247-014-3066-1

Kim, M. S., & Sim, S. Y. (2015). Spinal subdural hematoma associated with in-

tracranial subdural hematoma. Journal of Korean Neurosurgical Society, 58 (4),

397. http://doi.org/10.3340/jkns.2015.58.4.397

https://doi.org/10.1214/08-aoas191
https://doi.org/10.1186/s12874-022-01641-6
https://doi.org/10.1093/biomet/63.1.51
https://doi.org/10.1007/s11222-012-9359-z
https://doi.org/10.1002/sim.1047
http://www.jstor.org/stable/1271436
http://www.jstor.org/stable/1271436
https://doi.org/10.32614/RJ-2017-030
https://doi.org/10.1007/s00247-014-3066-1
https://doi.org/10.3340/jkns.2015.58.4.397


46 References

Kimball, A. E., Shantz, K., Eager, C., & Roy, J. (2018). Confronting quasi-separation

in logistic mixed effects for linguistic data: A bayesian approach. Journal of Quan-

titative Linguistics, 26 (3), 231–255. http://doi.org/10.1080/09296174.2018.1499457

Kratchman, D. M., Vaughn, P., Silverman, L. B., Campbell, K. A., Lindberg, D. M.,

Anderst, J. D., . . . Wood, J. N. (2022). The CAPNET multi-center data set for

child physical abuse: Rationale, methods and scope. Child Abuse & Neglect, 131,

105653. http://doi.org/10.1016/j.chiabu.2022.105653

Lemoine, N. P. (2019). Moving beyond noninformative priors: Why and how to

choose weakly informative priors in bayesian analyses. Oikos, 128 (7), 912–928.

http://doi.org/10.1111/oik.05985

Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized

linear models. Biometrika, 73 (1), 13–22. http://doi.org/10.1093/biomet/73.1.13

Mondol, M. H., & Rahman, M. S. (2019). Bias-reduced and separation-proof GEE

with small or sparse longitudinal binary data. Statistics in Medicine, 38 (14),

2544–2560. http://doi.org/10.1002/sim.8126

Morel, J. G., Bokossa, M. C., & Neerchal, N. K. (2003). Small sample correction for

the variance of GEE estimators. Biom. J., 45 (4), 395–409.

Mussner, M. (2022). Simulation study on penalized generalized estimating equations

after multiple imputation for repeated binary data with a rare event. Retrieved

from https://documentserver.uhasselt.be/handle/1942/38551

Pan, W. (2001). Akaike’s information criterion in generalized estimating equations.

Biometrics, 57 (1), 120–125.

Rabbitt, A. L., Kelly, T. G., Yan, K., Zhang, J., Bretl, D. A., & Quijano, C. V. (2020).

Characteristics associated with spine injury on magnetic resonance imaging in

children evaluated for abusive head trauma. Pediatric Radiology, 50 (1), 83–97.

http://doi.org/10.1007/s00247-019-04517-y

https://doi.org/10.1080/09296174.2018.1499457
https://doi.org/10.1016/j.chiabu.2022.105653
https://doi.org/10.1111/oik.05985
https://doi.org/10.1093/biomet/73.1.13
https://doi.org/10.1002/sim.8126
https://documentserver.uhasselt.be/handle/1942/38551
https://doi.org/10.1007/s00247-019-04517-y


References 47

The radiological investigation of suspected physical abuse in children | The Royal

College of Radiologists — rcr.ac.uk. https://www.rcr.ac.uk/publication/

radiological-investigation-suspected-physical-abuse-children.

Wootton-Gorges, S. L., Soares, B. P., Alazraki, A. L., Anupindi, S. A., Blount, J. P.,

Booth, T. N., . . . Palasis, S. (2017). ACR appropriateness criteria ® suspected

physical abuse—child. Journal of the American College of Radiology, 14 (5), S338–

S349. http://doi.org/10.1016/j.jacr.2017.01.036

https://www.rcr.ac.uk/publication/radiological-investigation-suspected-physical-abuse-children
https://www.rcr.ac.uk/publication/radiological-investigation-suspected-physical-abuse-children
https://doi.org/10.1016/j.jacr.2017.01.036

	Chapter 1: Introduction
	Study Objectives

	Chapter 2: Methods
	Study Population
	Data
	Outcome of Interest
	Statistical Methods
	Exploratory Data Analysis
	Logistic Regression
	Adjusting for Clustered Data
	Generalized Estimating Equations
	Multilevel Logistic Mixed Effects
	Penalized Methods to Address Data Separation Issues
	Penalized Generalized Estimating Equations
	Penalized Multilevel Logistic Regression


	Chapter 3: Results
	Descriptive Statistics
	Spinal imaging
	Summary of spinal injur(ies) based on spinal imaging data
	Clinical characteristics associated with spine injury among children with spine MRI

	Model Results
	Generalized Estimating Equations Results
	Multilevel Logistic Regression Results


	Conclusion
	Discussion
	Limitations
	Future Work

	Appendix A: 
	References

