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Abstract

This paper summarizes the main points and methods presented in “A Gaussian
copula approach for dynamic prediction of survival with a longitudinal biomarker”
by Suresh et al. (2019) in the field of dynamic predictions in survival analysis. Dy-
namic prediction is the incorporation of information during patient follow ups to
obtain updated predictions of their risk. The incorporation of updated biomarkers
allows clinicians to respond appropriately to the patient’s needs. Joint modeling
and landmarking are two common approaches used for dynamic predictions; how-
ever, they have some disadvantages that might make them less attractive. Suresh
et al. proposes an alternative method based on Gaussian copulas that aims to have
the advantages of both approaches while avoiding their disadvantages. Their simula-
tion studies show Gaussian copulas performed generally well when compared to joint
modeling and landmarking and their application with real data further substantiates
the performance of Gaussian copulas in dynamic prediction.
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1 Review

For my article review, I chose to review “A Gaussian copula approach for dynamic predic-

tion of survival with a longitudinal biomarker” by Suresh et al. (2019) which proposed a

copula based method for dynamic prediction that aimed to have the advantages of joint

modeling and landmarking (two methods commonly used in dynamic survival prediction)

while surpassing some of their limitations. They compared the predictive performance of

their method versus two previously mentioned through simulation studies and a real world

dataset.

In the introduction, Suresh et al. pointed out the increasing interest in survival analysis

of patients beyond their baseline biomarker information. Estimation of risk for survival

outcomes is usually obtained from a prediction model that uses information at the baseline.

However, when we follow up with individuals, some biomarkers may be updated and this

information ought to be incorporated into the survival prediction, thus producing what

Suresh et al. calls “dynamic predictions”. This is an important concept because dynamic

predictions with updated biomarker information can then help clinicians make responsive

and timely therapies or interventions.

To do this, it requires a technique that produces survival predictions at baseline and

also incorporates additional biomarker information to produce updated predictions for pa-

tients still alive in the future. So dynamic predictions are seen as a conditional distri-

bution ([T |T > τ,Z(τ)]) where we have a model for failure time T that incorporates

time-dependent biomarker information Z(t) where Z(τ) is the marker information avail-

able up to time τ . The two most common methods to achieve this are “joint modeling”

and “landmarking”.

Joint modeling consists of two models: a model for Z(t) and a model for the failure time

T. From these two models, a joint distribution [T,Z] can be derived. An advantage to joint

modeling is that it produces a valid prediction function meaning we can get consistent con-

ditional survival predictions. However, a disadvantage to joint modeling is that it requires

full specification of the marker process which means making certain distributional assump-

tions about future values of the markers. Suresh et al. continued to say that the marker

process may be hard to estimate with sparse longitudinal measurements and misspecifi-
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cation of the model can lead to biased predictions. Moreover, it can be computationally

burdensome for estimation and calculation of dynamic predictions.

On the other hand, landmarking requires specifying a survival model for [T |T > τ,Z(τ)]

by using the empirical failure time distribution at certain fixed time points, τ , conditional

on being alive at τ and having marker information up until time τ (i.e. the marker value

Z(τ)). We estimate this empirical distribution using a Cox regression to model the hazard

h(t|τ, Z(τ)). An advantage of landmarking is that it does not require the specification

of a model for the marker process like in joint modeling; however, there are numerous

decisions required in this method such as specifying beforehand the prediction times of

interest (i.e. landmark times).

Suresh et al. then proposed a copula based approach for dynamic prediction that aimed

to combine the advantages of joint modeling and landmarking while still maintaining good

predictive performance. Copulas are multivariate cumulative distribution functions with

uniform margins and through Sklar’s theorem, we can link marginal distribution functions

with the copula to create a joint distribution. This method requires specifying the marginal

distribution functions T |T > τ and Z|T > τ for individuals alive at time τ . Then a bivariate

Gaussian copula models the joint distribution ((Z, T )|T > τ). This approach allows us to

specify the marginal distribution functions and model their association separately using

the Gaussian copula.

In specifying models for the copula components, Suresh et al. prioritized simple flexible

(possibly misspecified) models that approximate the true distribution. This avoided making

strong modeling assumptions and allowed for easy estimation in software like R. They then

go over how they chose to model the marker data, the failure time data, and the association.

They further discussed that they chose the Gaussian copula for its tractable nature but

recognized other copulas have different strengths and weaknesses.

Next, they demonstrated the performance of their method compared to joint modeling

and landmarking through simulation studies. They measured performance using versions

of area under the curve (AUC) and R2 measures. Without going into the mathematical

nuances, the idea is that they have true measures of AUC and R2 and estimated versions

so then smaller differences between the two indicate better performance. Furthermore,
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they looked at the root mean squared prediction error (RMSPEs) between true conditional

survival probabilities and predicted conditional survival probabilities to see if their method

was consistently predicting higher or lower than the true probabilities.

They performed five hundred simulations, with 1000 subjects in each simulation, for

various scenarios. Five hundred subjects were randomly sampled to create the training set

while the rest made up the validation data set. They simulated patients who have been

followed for 10 years with longitudinal biomarkers measured at baseline. They considered

various patterns of biomarker observations over time as well as various models to assess

robustness in more general situations. For joint modeling and landmarking models, they

also considered various versions of these models which consisted of three joint modeling

models and four landmark models. In addition, diagnostic plots and goodness-of-fit tests

were used to examine the models.

After performing the simulation studies comparing all the various models, they con-

cluded that the copula method had good predictive performance across the measures con-

sidered. Some key results they highlighted were that the copula method consistently per-

formed better than the landmark model with baseline hazard as a function of landmark

time and in certain situations, performed similarly to a joint model. Lastly, they found the

copula method to be robust to the choice of the association function when the marginal

models are well chosen. Results of one scenario are displayed below.
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Next, they compared the methods using real world data in the form of an aortic heart

valve study. They used data from an observational study that consisted of 248 patients who

had gotten an aortic valve replacement to compare the efficacy of two types: homograft

or stentless. Longitudinal measurements of the left ventricular mass index (LVMI) were

measured at baseline (after surgery). Build up of mass in the left ventricular can lead to

heart attacks which incentivizes measuring individual’s changing LVMI to perform dynamic

predictions of risk of death. They utilized 5-fold cross-validation to compute the measures

used in the simulation study and found that all the methods performed similarly.

Lastly, they discussed some of the limitations to their proposed method. They noted

that it relies on the availability of data at prediction times of interest to properly model

the joint distribution. Because the marginals are models and there is a model for the

association, a lot of parameters need to be estimated. Moreover, Gaussian copulas only

apply when linking two continuous outcomes.

In summary, this paper proposed a new method for dynamic predictions as an alterna-

tive to two common methods, joint modeling and landmarking. They proposed a copula-

based approach that aimed to have the advantages of both joint modeling and landmarking

while mitigating the cons of both. They then performed simulation studies to compare the

three methods and found that their proposed method generally had good predictive per-

formance. And when they applied all three methods to an aortic valve study, they found

all methods gave similar results.

Overall, as a student in STAT495, I think this paper can appeal to a broad audience.

For those who might not know much about this subject (like myself), I felt it was compre-

hensible and I could grasp the big ideas while at the same time, it also had more theoretical

information for those more educated in this subject. The information was clear and it was

well organized.
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