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Abstract

Categorical data analysis with ordinal responses is important in fields such as the

social sciences because when we take into consideration the intrinsic ordering of ordi-

nal variables, we can often obtain more powerful inferences. One step in categorical

analysis is exploring the various dependence structures among the variables for ex-

ploratory modeling. A dependence structure of particular interest is that of the

regression dependence which many model-based approaches have been constructed.

However, there are comparatively fewer model-free approaches to examining depen-

dence structures in categorical data, and most of these do not focus on regression

dependence. To address this, Wei & Kim (2021) proposed a new model-free mea-

sure based on the checkerboard copula and demonstrated its ability to identify and

quantify the regression dependence in multivariate categorical data with an ordinal

response variable and categorical (nominal or ordinal) explanatory variables in an

exploratory manner. This thesis explores their novel measure and the methodology

behind it. In addition, we extend their work by proposing a model-based estimator

of their measure. We conduct simulation studies to evaluate the performance of the

model-free and model-based measure. Initial results demonstrated that model-based

estimates of the measure from well-fitted models compared similarly to the model-free

estimator of the measure, suggesting further exploration into the possibility of using

the model-free estimator as a goodness of fit measure.
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Chapter 1 Introduction

All models are wrong, but some are

useful.

George E. P. Box.

Categorical data analysis with ordinal responses is important in a variety of fields,

ranging from the social sciences to the public health sciences. In the social sciences, an

ordinal response of interest might be the opinions of people. Examples might include

opinions on government spending (i.e., (1) too high, (2) just enough, (3) too low)

or the Likert psychometric response scale with 5 possible choices (i.e., (1) strongly

disagree, (2) disagree, (3) neither agree nor disagree, (4) agree, (5) strongly agree).

In the medical and public health sciences, it can be used to denote the severity of

injuries or health risks. It is also important to note that ordinal variables should not

be confused with nominal variables which are categorical variables with no intrinsic

ordering. Examples of these include a person’s ethnicity or a person’s favorite brand

of toothpaste. There exist many well established statistical methods like the Pearson

χ2 test of independence that treat the response variable as nominal, which means they

do not utilize the order of the variables. But when we take into account the intrinsic

ordering of the variables, our ordinal statistical analyses can give more powerful results

than ones that ignore the ordinality (Agresti, 2010).

Wei & Kim (2021) explain that an important primary step in data analysis with
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ordinal responses is the exploration and examination of the various dependence struc-

tures among the random variables for exploratory and descriptive modeling. It is

important for the researchers to identify dependency patterns, summarize the de-

pendencies and obtain ideas on what may affect the ordinal variable. One of these

dependence structures of interest is that of the regression dependence where we are

interested in the relationship between an ordinal response variable and categorical

explanatory variable(s).

Model-based approaches to modeling regression dependence in ordinal response

data have been constructed and popular methods include the cumulative logit model,

adjacent-categories logit model, and latent variable models. One could also utilize a

range of model-free approaches to ordinal response data such as ordinal odds ratios

and rank-based methods like Kendall’s tau and Spearman’s rank-based correlation.

These model-free approaches do not require the explicit specification of the underlying

dependence structure among the variables. However, some of the model-free methods

mentioned above do not work well when one is interested in the regression dependence

of multivariate ordinal data with an ordinal response variable. These methods are

mainly designed to explore bivariate association between two ordinal variables and

some of these methods treat the two ordinal variables symmetrically, meaning there

exists no distinction between the response variable and the explanatory variable(s).

To address this problem, Wei & Kim (2021) propose a novel model-free data

dependent measure, called the checkerboard copula regression association measure

(CCRAM), to identify and quantify the regression dependence in multivariate cate-

gorical data with an ordinal response variable and categorical (nominal or ordinal)

explanatory variables — based on the checkerboard copula, a certain type of joint

distribution function. The checkerboard copula is just one type of copula model used

when we are dealing with noncontinuous variables. As we will see in Chapter 2,
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in the continuous case, copula models are very useful in modeling the dependence

structure between variables and their joint distribution. For instance, in the field of

hydrology, Genest & Favre (2007) propose the use of copulas in exploring the pairwise

dependence between characteristics of water such as depth, volume, and duration of

flows.

This thesis, motivated and based on Wei & Kim (2021), aims to evaluate the per-

formance of the CCRAM in a model-free manner and understand the methodologies

used in its construction. As an extension of their work, we propose a model-based

version of the CCRAM later on in Section 4.5.2 of Chapter 4 to assist in our evalu-

ation of the model-free CCRAM. The difference between their model-free CCRAM

and our proposed model-based CCRAM is in how we estimate the joint probabilities.

The model-free CCRAM estimates joint probabilities directly from the data while

the model-based CCRAM estimates the joint probabilities using a model. Because

Wei & Kim (2021) demonstrated in their paper that the model-free CCRAM is able

to identify and quantify the regression dependence without having to assume any

assumptions about the underlying dependence structures, we are interested to see

how a model-based version of the CCRAM compares. Our goal with this proposed

method is to see if the model-free CCRAM can be used as a goodness of fit measure

in ordinal response analyses.

The rest of the thesis is organized as follows. In Chapter 2, we provide a literature

review on copulas in the continuous case and establish key theorems, concepts, and

principles that make copulas useful for dependence modeling. In Chapter 3, we ex-

amine the challenges with copula modeling when we have discrete random variables.

In Chapter 4, we introduce the checkerboard copula used when a discrete variable is

present, the model-free CCRAM from Wei & Kim (2021), and our proposed model-

based CCRAM. In Chapter 5, we simulate contingency tables under various conditions
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to evaluate the performance of both CCRAMs; a real world application is included

in this chapter as well. In Chapter 6, we conclude with a summary of our findings

and future work.
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Chapter 2 Literature Review on Continuous Cop-

ulas & Dependence Measures

Li’s Gaussian copula formula will go

down in history as instrumental in

causing the unfathomable losses

that brought the world financial

system to its knees.

Felix Salmon

2.1 Preliminary Concepts

Let R denote the real line (−∞, ∞) and R2 denote the real plane (R×R). A rectangle

in the real plane is the Cartesian product of two closed intervals: [x1, x2] × [y1, y2]

where the vertices of the rectangle are (x1, y1), (x1, y2), (x2, y1), (x2, y2). The unit

interval is denoted by I = [0, 1] and so I2 = I × I = [0, 1]2 denotes the unit square.

We will use the following two Lemmas throughout this chapter:

Lemma 1 (Probability Integral Transformation; Hofert et al. (2018), p.3). Let F be

a continuous distribution function and let X ∼ F . Then the random variable F (X)

is a standard uniform random variable, i.e., F (X) ∼ U(0, 1).
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Definition 1 (Quantile Function). F← is the quantile function defined by:

F←(y) = inf{x ∈ R : F (x) ≥ y}, y ∈ [0, 1].

Note that for continuous and strictly increasing distribution functions F, F← is equiv-

alent to the ordinary inverse, i.e., F← = F−1. But if a margin is not strictly increasing,

then it does not possess an inverse in the usual sense.

Lemma 2 (Quantile Transform; Hofert et al. (2018), p.4). Let U ∼ U(0, 1) and let

F be any distribution function. Then F←(U) ∼ F .

2.2 A Motivating Example

Suppose we are handed two bivariate data sets, each consisting of 1000 independent

observations from a bivariate random vector (X1, X2) and (Y1, Y2), respectively (dis-

played in Figure 2.1) and are asked to compare them in terms of their “dependence”

between the variables, meaning how X1 and X2 relate compared to the relationship

between Y1 and Y2. How would we go about approaching this question? One way

we could do this is to calculate the Pearson correlation coefficient within each data

set. After some calculations, we find that the correlation between X1 and X2 is ap-

proximately 0.69 while the correlation between Y1 and Y2 is approximately 0.6. This

suggests that the dependence between X1 and X2 is stronger. However, it is impor-

tant to remember that the correlation coefficient is only useful for capturing the linear

dependence between the underlying variables. If we look at the right plot of Figure

2.1, we quickly notice that the relationship between Y1 and Y2 does not have a linear

shape. Looking at the marginals on the side of the plots, we see that both X1 and X2

on the left plot have normal marginals which makes Pearson’s appropriate. On the

other hand, Y2 appears to follow an exponential or highly right-skewed distribution.
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Because the marginal distribution of Y2 differs from the marginals of X1 and X2, we

might be dubious about using the correlation coefficient to compare the dependence

between X1 and X2 and the dependence between Y1 and Y2. Perhaps if the marginals

were the same, comparisons can be made on fairer grounds.
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Figure 2.1: Scatter plots of 1000 independent observations of (X1, X2) and
(Y1, Y2). Marginal densities are given along the sides.

One method of transforming the marginals is via Lemma 1. Suppose we know

that X1 ∼ N(0, 1), X2 ∼ N(0, 1), Y1 ∼ Beta(5, 10), Y2 ∼ Exp(1). Let F1, F2, G1 and

G2 denote the distribution functions of X1, X2, Y1 and Y2 respectively. Knowing the

distribution functions, we transform X1, X2, Y1 and Y2 into F1(X1), F2(X2), G1(Y1)

and G2(Y2), all of which follow a Uniform(0,1) distribution according to Lemma 1.

The transformed results are illustrated in Figure 2.2.
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Figure 2.2: Scatter plots of 1000 independent observations of (F1(X1), F2(X2)))
and (G1(Y1), G2(Y2)). Marginal densities are given along the sides.

In Figure 2.2, both transformed data sets appear to be similar.1 And now, for

either dataset, we get a Pearson correlation coefficient of approximately 0.68, implying

both bivariate associations have the same dependence.

We can consider another approach using Lemma 2. Instead of transforming both

data sets to make all marginals uniform, we transform the second one to have standard

normal marginals to match the first dataset. To do this though, we actually need

to first apply Lemma 1 before applying Lemma 2. Recall that Y1 ∼ G1 and Y2 ∼

G2, where G1 = Beta(5, 10) and G2 = Exp(1). We first apply Lemma 1 and get

G1(Y1) ∼ U(0, 1) and G2(Y2) ∼ U(0, 1). Then Lemma 2 tells us that applying the

quantile transform using F−1
1 and F−1

2 on G1 and G2 results in F−1
1 (G1(Y1)) ∼ N(0, 1)

1In fact, we constructed them in an identical manner.
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and F−1
2 (G2(Y2)) ∼ N(0, 1).
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Figure 2.3: Scatter plots of 1000 independent observations of (X1, X2) and
F −1

1 (G1(Y1)), F −1
2 (G2(Y2)). Marginal densities are given along the sides.

Using this second approach, the Pearson correlation coefficient between

F−1
1 (G1(Y1)) and F−1

2 (G2(Y2)) is 0.69, the same as the correlation between X1 and

X2. This flexibility is why copulas are so attractive. Copulas represent the idea that

the dependence between components of a random vector should not be influenced

by its marginal distributions. In other words, the statement, “(X1, X2) and (Y1, Y2)

have the same dependence” can be thought of as “(X1, X2) and (Y1, Y2) have the

same copula” (Hofert et al. 2018).
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2.3 Copulas

Copulas allow the study of dependence of variables separate from their marginals.

Informally, copulas are a particular kind of multivariate distribution function with

standard uniform marginals. They can be thought of as functions that “couple”

joint distribution functions to their marginal distribution functions.2 More on this

will be discussed in Section 2.6, but first, let’s establish some more key preliminary

definitions.

Definition 2. A 2-dimensional subcopula (2-subcopula) is a function CS : D1×D2 →

I where {0, 1} ⊆ Di ⊆ I for i = 1, 2 with the following characteristics:

• Grounded, i.e., : CS(u, 0) = 0 = CS(0, v), ∀u ∈ D1, ∀v ∈ D2

• CS(u, 1) = u, ∀u ∈ D1 and CS(1, v) = v, ∀v ∈ D2

• 2-increasing, i.e., : CS(u2, v2) − CS(u1, v2) − CS(u2, v1) + CS(u1, v1) ≥ 0 where

u1 ≤ u2 and v1 ≤ v2.

Definition 3. A 2-dimensional copula (2-copula) is a function C : D1 × D2 → I

where D1 = I = D2 with the following characteristics:

• Grounded, i.e., : C(u, 0) = 0 = C(0, v), ∀u ∈ D1, ∀v ∈ D2

• C(u, 1) = u, ∀u ∈ D1 and C(1, v) = v, ∀v ∈ D2

• 2-increasing, i.e., : C(u2, v2)−C(u1, v2)−C(u2, v1)+C(u1, v1) ≥ 0 where u1 ≤ u2

and v1 ≤ v2.

Here are some remarks about the previous definitions:
2Fun fact: The name "copula" was chosen to emphasize how a copula "couples" a joint distribution

function to its marginal distributions. In Latin, "copula" means to "link" or to "tie".
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• These two definitions are quite similar but it is important to note that for

copulas, the domain is the entire unit square and this occurs when X and Y

are both continuous random variables. Moreover, subcopulas and copulas are

the same when the marginal random variables are continuous. As we will see

in Chapter 4, there is a way to extend the sub-copula to the whole unit square.

• In this thesis, we mostly consider the bivariate case when describing and defining

various concepts but many definitions and theorems have analogous multivari-

ate versions. However, one must be cautious when generalizing as there are

exceptions. See section 2.10 in Nelsen (2006) for more details.

• It is worth noting that it is not absolutely necessary that copulas have standard

uniform margins. Having standard uniform margins is just an easy way to work

with copulas, but one could have used other margins too.

• A copula C is considered absolutely continuous if it admits a density and it

admits a density if

c(u, v) = ∂2

∂u∂v
C(u, v), (u, v) ∈ (0, 1)2,

exists and is integrable.

• We can also derive the conditional cumulative distribution function from the

copula itself:

P (V ≤ v|U = u) = ∂

∂u
C(u, v).

11



2.4 Bivariate Copula Examples

Let’s see some examples of bivariate copulas to ground our discussion. One of the

simplest copulas is the independence copula:

Π(u, v) = u × v, (u, v) ∈ [0, 1]2 (2.1)

which is the distribution function of the random vector (U, V ) where U ∼ Unif(0, 1)

and V ∼ Unif(0, 1) are independent. As the name alludes, two random variables

X and Y are independent if and only if the copula C = Π. We use the R package

copula written by Hofert et al. (2020) to plot the surface plot and contour plot for

an independence copula.
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Figure 2.4: Surface plot (left) and contour plot (right) of an independence copula.

The independence copula is indeed a copula as it has the following properties:

• Grounded: For all (u, v) ∈ [0, 1]2 where u = 0, C(u, v) = C(0, v) = 0. A similar

case can be made for v = 0.

• For all (u, v) ∈ [0, 1]2 where u = 1, C(u, v) = C(1, v) = v. A similar case can

be made for v = 1.
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• 2-increasing: Let (u1, v1), (u2, v2) ∈ [0, 1]2 such that u1 ≤ u2 and v1 ≤ v2. Then

C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) = u2v2 − u1v2 − u2v1 + u1v1 =

(u2 − u1)(v2 − v1) ≥ 0.

There are also copulas that belong to parametric families. One of those families is

the Frank family of copulas. It is parametrized by θ ∈ R \ {0} and the copulas are

defined by:

CF
θ = −1

θ
log

(
1 + (exp(−θu) − 1)(exp(−θv) − 1)

exp(−θ) − 1

)
, (u, v) ∈ [0, 1]2 (2.2)

where CF
0 = Π due to the fact that it converges to Π as θ → 0. The parameter θ

in Equation (2.2) controls the dependence between the components of (U, V ) ∼ CF
θ .

Using the R package copula, we plot the surface plot and contour plot of the Frank

copula and it’s density given θ = −9 as shown in Figure 2.5.
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Figure 2.5: Surface plot and contour plots of CF
θ (left) and its corresponding

density (right) for θ = −9.
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In addition, Figure 2.6 illustrates how θ controls the dependence by sampling

1000 independence observations from CF
θ given θ ∈ {−9, 0, 9} using the rCopula()

function within the package.
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Figure 2.6: 1000 independent observations of (U, V ) ∼ CF
θ for θ = −9 (left), θ = 0

(middle), θ = 9 (right).

Observe in Figure 2.6, that by changing θ from −9 to 0 to 9, the components of

(U, V ) ∼ CF
θ went from negatively dependent in the sense that larger values of U

tend to be associated with smaller values of V (left plot) to positively dependent in

the plot on the right, meaning larger values of U tend to be associated with larger

values of V .

Table 2.1: Families of Bivariate Copulas

Copula Family Distribution Function Parameter

Clayton Cθ(u, v) = max{u−θ + v−θ − 1, 0}−
1
θ θ ∈ (0, ∞)

Farlie-Gumbel-Morgernstern Cθ(u, v) = uv(1 + θ(1 − u)(1 − v)) θ ∈ [−1, 1]

Frank −1
θ log(1 + (exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1 ) θ ∈ R \ {0}

Gaussian Cθ(u, v) = Φθ{Φ−1(u), Φ−1(v)} θ ∈ (−1, 1)
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Table 2.1 lists some other commonly used parametric copula families used in

modeling dependence structures. As another example, Figure 2.7 shows various plots

regarding a Gaussian copula where θ ≈ 0.707. Top left is the surface plot of the

density of the Gaussian copula, top right is the contour plot of the Gaussian copula,

bottom left is the contour plot of the density, and bottom right is a scatter plot of a

generated sample of 1000 points from the copula.
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Figure 2.7: Surface plot of the density of a normal copula with θ ≈ 0.707 (top
left), contour plot of the normal copula (top right), of its density (bottom left), and
a scatter plot of 1000 observations from the normal copula (bottom right).

Observe the elliptical shape of the generated observations in the bottom right plot

of Figure 2.7. The beauty behind various copulas is that it provides us great flexibility

in modeling dependence structures. There exists many different copulas, along with

numerous copula-specific transformations and constructions (e.g. rotations, mixtures,

Khoudraji’s Device), that one can use to capture various dependence structures, sym-

metric or not. See Chapter 3 of Hofert, Kojadinovic, Martin, & Yan (2018) for more

copulas.
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2.5 Fréchet-Hoeffding Bounds

One of the key concepts behind copulas is the following theorem which can be at-

tributed to Hoeffding (1940) and Fréchet (1951). This theorem states that any copula

C is pointwise bounded below by the lower Fréchet-Hoeffding Bound W and above

by the upper Fréchet-Hoeffding Bound M .

Theorem 1 (Fréchet-Hoeffding Bounds; Hofert et al. (2018), p.19). For any 2-

dimensional copula C,

W (u, v) ≤ C(u, v) ≤ M(u, v), u, v ∈ [0, 1] (2.3)

where W (u, v) = max {u + v − 1, 0} and M(u, v) = min{u, v}.

There also exists a stochastic representation of the above theorem. It can be

verified that

(U, 1 − U) ∼ W and (U, U) ∼ M (2.4)

where U ∼ Unif(0, 1) (Hofert et al. 2018). To be more precise, Theorem 1 is consid-

ered the “analytic” version whereas Equation (2.4) is the “stochastic” representation

of that same idea. This stochastic representation is particularly helpful in simulations,

especially for generating random samples from copulas. For instance, the following

example code can be used to generate a random sample from the W and M copulas;

corresponding results are shown in Figure 2.8.

set.seed(713) # reproducibility
par(mfrow = c(r = 1, c = 2)) # 2x2 grid
M <- runif(100) # sample 100 from a standard uniform
plot(cbind(M, 1 - M), xlab = "U", ylab = "V") # W
plot(cbind(M, M), xlab = "U", ylab = "V") # M
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Figure 2.8: Scatterplot of n = 1000 independent observations from W (left) and
M (right).
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Figure 2.9: Surface plots (top) and contour plots (bottom) of W (left) and M
(right).

The wireframe and contour plots of W and M are displayed in Figure 2.9. On
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the left is the W copula and on the right is the M copula. Note that the graph of

all subcopulas and therefore copulas, lies between these two surfaces, z = W (u, v)

and z = M(u, v). Consider the Frank copulas shown in Figure 2.6 as an example. It

can be shown that, as the parameter θ increases, the scatter plot of a random sample

from the corresponding Frank copula will get closer to the right plot of Figure 2.9

which represents the M copula. On the other hand, when θ decreases, the scatter

plot will get closer to the left plot of Figure 2.9 which represents the W copula. In

other words, the Frank copula family is bounded between the W and M copulas.

In addition, W is known as the countermonotone copula and M is known as the

comonotone copula. Moreover, the dependence between the components of (U, U)

modeled by M is referred to as the perfect positive dependence (if one component

increases, the other increases almost surely, with probability 1), On the other hand,

the dependence between the components of (U, 1 − U) modeled by W is referred

to as perfect negative dependence (if one component increases, the other decreases

almost surely, with probability 1). Note that for W , this notion of perfect negative

dependence cannot be extended to 3 or more dimensions. If two components of a

random vector are perfectly negative dependent, then they both cannot be perfectly

negative dependent with a third component.

2.6 Sklar’s Theorem

This next theorem, attributed to Sklar (1959), is the real bread and butter of copula

theory as it elucidates the relationship between a multivariate joint distribution and

its univariate margins.

Theorem 2 (Sklar’s Theorem).

Part 1. Let H be a joint distribution function with univariate marginal distribution
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functions F and G. Then there exists a copula C such that for all x, y in R,

H(x, y) = C(F (x), G(y))). (2.5)

When F and G are continuous, C is unique but otherwise C is uniquely determined

on RanF ×RanG where RanF , RanG denote the range of F and G respectively. The

copula C is given by:

C(u, v) = H(F←(u), G←(v)), (u, v) ∈ RanF × RanG. (2.6)

Part 2. Conversely, given a bivariate copula and univariate marginal distribution

functions F and G. H defined above is a 2-dimensional distribution function with

margins F and G.

Here are some remarks stemming from this theorem:

1.) From Sklar’s theorem, copulas are bivariate distribution functions which com-

bine univariate marginal distribution functions to create a 2-dimensional distribution

function H. This is what it means for copulas to “couple” or link multivariate distribu-

tion functions to their univariate margins. Moreover, this implies that the univariate

margins and the multivariate dependence structure can be separated and that the

dependence structure is characterized by the copula C.

2.) If F and G are continuous, then the copula C is unique, otherwise, C is

uniquely defined on RanF ×RanG. When dealing with continuous random variables,

there is only one copula that characterizes the dependence structure; this is why

copulas are often used when concerning continuous random vectors.

3.) Sklar’s Theorem can be used to verify that a random vector has a continuous

distribution function H if and only if it has continuous univariate marginal distribu-
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tions.

Part 1 of Theorem 2 is often used in statistical applications. For a given continuous

distribution function, part 1 implies the uniqueness of the underlying copula which is

unknown. But because it is unique, it justifies its estimation from data and once we

estimate the margins and the copula, we can couple them as in part 1 to obtain the

estimated multivariate distribution function. Part 2 is also of interest to those who

might need to create flexible multivariate distribution functions with given univariate

margins.

Let’s look at two examples to see the utility of copulas.

2.6.1 Sklar’s Theorem: Decomposition

Using Equation (2.6) from Part 1 of Sklar’s Theorem, we can create copula families

from existing multivariate distribution families. Suppose we started with a Normal

bivariate distribution, H, and we know that the marginal distributions of H are

univariate normal. We can use this to help us construct the normal (Gaussian)

copula family. We demonstrate with the following code from mvtnorm (Genz et al.

(2021)) and copula where we show that the same output was returned whether we

apply the bivariate normal distribution function (using pmvnorm()) or the Normal

copula distribution function (using pCopula()).

set.seed(713) # reproducibility
d <- 2 # dimension
rho <- 0.4 # off-diag entry of the correlation matrix
u <- runif(d) # generate a random point
x <- qnorm(u) # applying the quantile transform
# bivariate normal distribution
mvtnorm::pmvnorm(

upper = x, corr = matrix(c(1, rho, rho, 1), nrow = 2),
keepAttr = FALSE

)
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[1] 0.00338

# normal copula
nc <- normalCopula(rho)
copula::pCopula(u, copula = nc)

[1] 0.00338

2.6.2 Sklar’s Theorem: Composition

We can use the second part of Sklar’s Theorem to generate a variety of multivariate

distribution functions from a given copula C. To this end, we employ the copula

package and create two different distribution functions.

H1 <- copula::mvdc(fgmCopula(1),
margins = c("beta", "exp"),
paramMargins = list(list(shape1 = 7, shape2 = 3), list(rate = 1))

)

H2 <- copula::mvdc(fgmCopula(1),
margins = c("norm", "norm"),
paramMargins = list(list(mean = 3, sd = 2), list(mean = 0, sd = 1))

)

Here, we use the mvdc() function to first create a bivariate distribution function,

H1 with a Farlie-Gumbel-Morgenstern copula and Beta(7, 3) and Exp(1) marginals

and then H2 with a Farlie-Gumbel-Morgenstern copula and Normal(3, 2) and Exp(1)

marginals. Figure 2.10 shows the scatter plots of a sample of 1000 observations from

each of H1 and H2.
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Figure 2.10: Scatterplots of 1000 observations from two dfs H1 and H2, created
using a FGM-copula with Beta(7,3) and Exp(1) marginals (left) and Normal(3,2)
and Exp(1) marginals (right).

From this demonstration, one can see that for a given copula, it is very easy and

flexible to create a collection of bivariate or multivariate distributions with whatever

marginal distributions we desire!

Similar to the Fréchet-Hoeffding Bounds, we present a stochastic analog of Sklar’s

Theorem for continuous random vectors that will be used in later sections.

Lemma 3 (Stochastic Analog of Sklar’s Theorem; Hofert et al. (2018), p.35). Let

(X, Y ) be a bivariate random vector with continuous univariate marginal distribution

functions F and G. Then (X, Y ) has a copula C if and only if (F (X), G(Y )) ∼ C.

Given (X, Y ) ∼ H with continuous univariate margins F and G, Lemma 3 enables

the construction of a random vector (U, V ) ∼ C where C is the underlying unique

copula C. This can be seen as the stochastic analog of Part 1 of Theorem 2. On the

other hand, given (U, V ) ∼ C and univariate marginal dfs F and G, Lemma 3 tells
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us we can construct (X, Y ) ∼ H with copula C through:

(F←(U), G←(V )) ∼ H.

And this can be seen as the stochastic analog of Part 2 of Theorem 2.

2.7 Invariance Principle

Theorem 3 (Invariance Principle; Hofert et al. (2018), p.39). Let (X, Y ) ∼ H, with

continuous marginal distribution functions F, G and copula C. If TX , TY are strictly

increasing transformations on RanX, RanY respectively, then (TX(X), TY (Y )) also

has copula C.

Theorem 3 states that copulas are invariant under strictly increasing transfor-

mations on the ranges of the underlying random variables. Notice that for any 2-

dimensional continuous random vector with strictly increasing marginals F and G,

then it is clear that the invariance principle applies when F = T . It also applies to

any 2-dimensional random vector with standard uniform marginal distributions when

the quantile functions are strictly increasing.

Example 1 (From a bivariate normal distribution, to a normal copula, to a meta-nor-

mal model). To demonstrate the invariance principle, we generated a sample of 1000

independent observations of (X, Y ) that follows a standard bivariate normal distribu-

tion with ρ = 0.8 on the off-diagonal entries. Since X ∼ N(0, 1) and Y ∼ N(0, 1), we

apply to each component sample the corresponding distribution function and Lemma

3 tells us that we have a sample from a normal copula, which we denote as Cρ. Again

by Lemma 3, we can apply our quantile functions of interest to each component sam-

ple in order to obtain multivariate observations from a meta-normal model which is
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a distribution function obtained from a given normal copula.

Suppose our quantile functions of interest were the quantile function of the Beta

distribution with the following parametrization, α = 10 and β = 3 and the quan-

tile function of the Exponential distribution with λ = 2. By applying one quantile

function to each component sample, we thus have observations from a multivariate

distribution (meta-normal model). And Theorem 3 tells us that the copula remains

the same. Figure 2.11 illustrates this idea. On the left is the scatter plot of 1000 in-

dependent observations from a bivariate normal distribution. In the middle, we have

the corresponding sample after applying the Probability Integral Transform from a

normal copula. And on the right, once we applied our quantile functions, we have a

sample from a meta-normal model.
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Figure 2.11: Scatterplot of 1000 independent observations from a bivariate normal
distribution (left), corresponding sample after applying the Probability Integral
Transform from a normal copula (middle), and quantile transformed meta-normal
sample (right).
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Notice that the location of the three highlighted points in Figure 2.11 relative to

one another does not change. Along the X-axis, from left to right it is always Red,

Green, Blue and on the Y-axis, from bottom to top it is Red, Green, Blue. This

shows that componentwise, their ranks remain the same. Componentwise ranks were

not affected by the transformation since ranks are invariant to strictly increasing

transformations (the normal distribution function and the quantile function of the

beta and exponential distribution are all strictly increasing).

In summary, the Fréchet-Hoeffding Bounds, Sklar’s Theorem, and the Invariance

Principle in tandem make copulas extremely useful in joint modeling. We are able

to create all sorts of multivariate distributions with different marginal distribution

functions. Moreover, our choice of marginals does not change the copula nor does it

affect the underlying dependence structure, meaning no information about the depen-

dence structure lies within the marginals but with the copula C. Moreover, because

the copula C remains scale invariant under strictly increasing transformations, non-

parametric measures of dependence such as Kendall’s tau and Spearman’s rho can be

shown to be functions of just the copula itself.

2.8 Measures of Association

Since we now have a comprehensive idea about how copulas can model the dependence

structure by separating the joint distribution function from its marginals distribution

functions, it is desirable to quantify the dependence between two random variables X

and Y . In statistics, we often do this using numerical summaries called measures of

association. The most popular one is the Pearson correlation coefficient. It is probably

the first association measure most students learn in an Introductory Statistics course

and can be useful in the right situation. However, it has certain limitations.
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2.8.1 Pearson’s Correlation and its Fallacies

Definition 4 (Pearson correlation coefficient). Given a random vector (X, Y ) with

finite variances, then:

Cor(X, Y ) = Cov(X, Y )√
Var(X)

√
Var(Y )

= E((X − E(X))(Y − E(Y )))√
E((X − E(X))2)

√
E((Y − E(Y ))2)

. (2.7)

Here are some well-known properties of the Pearson correlation coefficient:

1. −1 ≤ Cor(X, Y ) ≤ 1.

2. |Cor(X, Y )| = 1 if and only if there exist a, b ∈ R where a ̸= 0 such that

Y = aX + b almost surely with a < 0 if and only if Cor(X, Y ) = −1, and a > 0

if and only if Cor(X, Y ) = 1. In either case, X and Y are said to be perfectly

linearly dependent.

3. If X and Y are independent, then Cor(X, Y ) = 0.

4. It is invariant under strictly increasing linear transformations.

It becomes clear that the Pearson correlation coefficient is a measure of linear de-

pendence and it is really only useful for elliptical distributions like bivariate normal

distributions. There are also other shortcomings to the Pearson correlation coefficient

that we briefly list below.

1. Existence: Cor(X, Y ) does not exist for every random vector (X, Y ).

2. Invariance: Cor(X, Y ) is not invariant under strictly increasing transformations

on Ran(X), Ran(Y ).

3. Uniqueness: The marginal distributions and the correlation coefficient do not

uniquely determine the joint distribution.
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4. Uncorrelatedness implies independence: Cor(X, Y ) = 0 does not necessarily

imply X and Y are independent.

5. Attainability: Given marginal distribution functions F and G, not every

Cor(X, Y ) ∈ [−1, 1] can be attained by choosing an appropriate copula for

(X, Y ).

Hofert et al. (2018) summarizes the main limitations of the Pearson correlation coef-

ficient as follows:

1. The correlation does not exist for all random vectors, only those with finite

second moments.

2. Correlation depends on the marginal distribution functions, meaning it cannot

be expressed in terms of the unique underlying copula alone.

3. Correlation is invariant under strictly increasing linear transformations, not

under strictly increasing transformations in general.

2.8.2 Rank-Based Correlation Measures

Since the Pearson correlation coefficient might not cut it, what can we turn to?

Because of Theorem 3, Nešlehová (2007) writes

“If the random variables under study have continuous distribution func-

tions, the corresponding copula is unique and remains the same if the

random variables are (almost surely) subject to strictly increasing trans-

formations, such as the change of scale or location. As monotonic de-

pendence also has this invariance property. . . it can be determined from

the corresponding copula alone. Consequently, concordance measures like
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Kendall’s tau and Spearman’s rho can be expressed solely in terms of the

corresponding copula.”

So let’s turn our attention to Spearman’s rho and Kendall’s tau, two well-known rank-

based measures of association which are invariant under strictly increasing transfor-

mations. Because rank-based correlation coefficients only depend on the underlying

copula C in the case of continuous random vectors, these measures overcome many

of the limitations that the Pearson correlation coefficient faces.

Definition 5 (Spearman’s Rho). Let (X, Y ) be a bivariate random vector with con-

tinuous marginal distribution functions F and G. The population version of Spear-

man’s rho is defined by

ρs = ρs(X, Y ) = Cor(F (X), G(Y )). (2.8)

One may interpret Spearman’s rho as the linear correlation coefficient of the ran-

dom vector (F (X), G(X)) which can be obtained by applying the Probability Integral

Transform (Lemma 1). It is clear that Spearman’s rho only depends on the underlying

copula C after transformation.

Definition 6 (Kendall’s Tau). Let (X, Y ) be a bivariate random vector with con-

tinuous marginal distribution functions F and G and let (X ′, Y ′) be an independent

copy of (X, Y ). The population version of Kendall’s tau is defined by

τ = τ(X, Y ) = E(sign((X − X ′)(Y − Y ′)))

where sign(x) denotes the sign of x, i.e., sign(x) =



−1, if x < 0,

0, if x = 0,

1, if x > 0.
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These rank-based measures are also known as measures of concordance. Consider

two points in R2, (x1, y1) and (x2, y2). The points are considered concordant if (x1 −

x2)(y1 − y2) > 0 and discordant if (x1 − x2)(y1 − y2) < 0. Using this idea and the

definition of Kendall’s tau, we can rewrite Kendall’s tau as: τ(X, Y ) = P ((X1 −

X2)(Y1 − Y2) > 0) − P ((X1 − X2)(Y1 − Y2) < 0) where it is seen as the probability of

concordance minus the probability of discordance. Similarly, we can write Spearman’s

rho as:

ρ(X, Y ) = 3P ((X1 − X2)(Y1 − Y2) > 0) − P ((X1 − X2)(Y1 − Y2) < 0).

We can also represent Spearman’s rho and Kendall’s tau in terms of the under-

lying copula C. Let (X, Y ) be a bivariate random vector with continuous marginal

distributional functions and copula C. Then we can define:

τ = τ(C) = 4
∫

[0,1]2
C(u, v)dC(u, v) − 1 (2.9)

ρs = ρs(C) = 12
∫

[0,1]2
C(u, v)dudv − 3. (2.10)

When X and Y are continuous, it can be shown that τ(C) = τ(X, Y ) and ρ(C) =

ρ(X, Y ) (Nelsen, 2006). If one of these measures is -1 or 1, then the copula C must

either be W or M. If it is 0, then the copula must be the independence copula. In

addition, these measures always exist, are invariant under strictly increasing trans-

formations, and can reach any value in [−1, 1].

Rank-based measures of dependence and the Pearson correlation coefficient are

not the only type of dependence measures out there. There are various measures that

look at tail dependence or quadrant dependence. See Chapter 5 of Nelsen (2006) for

other ways to measure dependence.
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2.9 Estimation

In the continuous case, we know that copulas characterize the dependence structure

and that there only exists one unique copula so a natural question a Statistician

might ask next is “how do we estimate the copula?” Copula estimation methods can

be parametric, semiparametric, or nonparametric. We will briefly introduce some

methods below, but won’t go into too much detail. Hofert, Kojadinovic, Martin, &

Yan (2018) goes more in depth for those that are interested in the various estimation

techniques.

First, let’s assume that we have a random sample, (X1, Y1), · · · , (Xn, Yn), of n

bivariate random vectors with a bivariate distribution function H and continuous

univariate margins F and G. By Theorem 2, there exists a unique copula C such

that

H(x, y) = C(F (x), G(y)), (x, y) ∈ R2. (2.11)

2.9.1 Estimation Under a Parametric Assumption on the Copula

We can estimate under a parametric assumption on the copula where we assume that

a copula C belongs to some continuous parametric family of copulas

C = {Cθ : θ ∈ Θ}, (2.12)

where Θ is the parameter space and is a subset of Rd where d ≥ 1. Under this

parametric assumption, we assume there exists some θ ∈ Θ such that C = Cθ. So in

order to estimate C, it becomes a matter of estimating the parameter vector.
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Moreover, if we know the margins F and G of H, then the sample

(U, V )i = (F (Xi), G(Yi)), i ∈ {1, · · · , n} (2.13)

would be observable and independently and identically distributed. By Lemma 3, it

would be a sample from C. Then we could turn to techniques such as maximum like-

lihood estimation. However, we do not know the margins of H and so the margins are

nuisance parameters that we have to estimate so that we can estimate the parameter

vector.

We can estimate the margins either parametrically or nonparametrically. If we

assume our margins belong to continuous parametric families of univariate distri-

bution functions, we can use maximum likelihood techniques to estimate both the

marginals and the copula. However, if the margins are misspecified, the estimation of

our parameter vector will be biased (Hofert et al. 2018). There can also be a compu-

tational burden if we want high-dimensional optimization. Instead, there is another

approach called the inference functions for margins estimator that Hofert et al. (2018)

and the references therein go more in depth on. On the other hand, we can avoid

issues of model misspecification for the marginals with nonparametric estimates by

finding the empirical distribution functions, Fn and Gn of the component samples of

(X1, Y1), · · · , (Xn, Yn). We estimate Fn and Gn nonparametrically by

Fn(x) = 1
n + 1

n∑
i=1

1(Xi ≤ x), x ∈ R; (2.14)

Gn(x) = 1
n + 1

n∑
i=1

1(Yi ≤ y), y ∈ R.3 (2.15)

3We divide by n + 1 instead of n to ensure that the sample lies in the interior of the unit square.
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We then use the estimated margins to form the sample

(Un, Vn)i = (Fn(Xi), Gn(Yi)), i ∈ {1, · · · , n} (2.16)

This sample is regarded as a consistently estimated version of the unobservable inde-

pendent and identically distributed sample, (U, V )i from Equation (2.13) and is often

called the “pseudo-observations” from C. Note that the Uns and Vns are not true

observations and they are also not independent since Fn and Gn depend on the Xs.

Furthermore, these estimators for the margins F and G are actually also functions

of the ranks of the observations. Let RXi
be the rank of Xi where i = 1, · · · , n and RYi

be the rank of Yi where i = 1, · · · , n. It is easy to verify that Fn(Xi) = RXi
/(n + 1)

and Gn(Yi) = RYi
/(n + 1); that is, the sample is the sample of multivariate scaled

ranks:

(Un, Vn)i = 1
n + 1(RXi

, RYi
), i ∈ {1, · · · , n}. (2.17)

With these nonparametrically estimated margins, one can then estimate the param-

eter vector of interest. Two of the most popular estimation methods in this case are

the method of moments approaches based on Kendall’s tau and Spearman’s rho and

the Maximum Pseudo-likelihood estimator. There are plenty of other semiparametric

approaches and we refer the reader to Chapter 2.6 and 4 of Hofert et al. (2018) for

these methods and more.

2.9.2 Nonparametric Estimation of the Copula

We can also make no parametric assumptions about the marginals or the copula C and

instead rely on nonparametric estimates. To this extent, we consider the empirical
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copula which is a consistent estimator of C defined by:

Cn(u, v) = 1
n

n∑
i=1

1(Un,i ≤ u, Vn,i ≤ v), (u, v) ∈ [0, 1]2 (2.18)

where (Un, Vn)i, i = 1, 2, · · · , n are the pseudo-observations from Equation (2.16)

(recall this sample uses the empirical distributions of Fn and Gn).

2.10 Big idea

There was a lot of information presented in this chapter and various ideas were in-

cluded in this chapter for the sake of a somewhat complete yet brief literature review

of copulas in the continuous case. The big idea the reader should keep in the back

of their mind is that in the continuous case, things work out nicely. There exists

a unique copula which models the dependence structure separate from the marginal

distribution functions. Because the copula is synonymous with the dependence struc-

ture, the problem of examining the dependence between random variables boils down

to estimating the unique copula that joins them together. However, there is no unique

copula when we travel into the discrete world, what we have now are “possible copu-

las” and this can cause all sorts of issues as we will see in the next chapter.
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Chapter 3 Challenges with Dependence Measures

for Discrete Variables

If all the statisticians in the world

were laid head to toe, they wouldn’t

be able to reach a conclusion.

Anon

Recall the definitions of subcopula and copula in Chapter 2. Copulas are subcop-

ulas whose entire domain is the unit square so the two would be the same when the

domain of the subcopula is the unit square. However, if this is not the case, then the

subcopula is only uniquely defined on the domain D1 ×D2 where we defined D1, D2 to

be the respective ranges of the margins F and G. In this scenario, any copula would

work here as long as it agrees on the domain, leading to an issue of identifiability.

In Chapter 4, we discuss one such copula but for now, we dedicate this chapter to

showing the issues that arise when at least one variable is discrete.

3.1 Issue of Identifiability

Recall Theorem 2 which states we can write the joint distribution function H in terms

of some copula C and its marginals F and G.

Consider Example 2 which shows that the only values of the copula C that have
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any effect on H are those that agree on the domain.

Example 2. Let (X, Y ) be a bivariate random vector from a bivariate Bernoulli

distribution such that: P (X = 0, Y = 0) = 1/8, P (X = 1, Y = 1) = 3/8, P (X =

0, Y = 1) = 2/8, P (X = 1, Y = 0) = 2/8. From Theorem 2, we know that

P (X ≤ x, Y ≤ y) = C(P (X ≤ x), P (Y ≤ y)) for all x, y and some copula C. Since

Ran(F ) = Ran(G) = {0, 3/8, 1}, the only constraint on C is that C(3/8, 3/8) = 1/8.

Any copula fulfilling this constraint is a copula of (X, Y ) and there are infinitely many

such copulas.

Another way we can think about this is that, in the discrete case, the domain

of the copula C is a proper subset of I2 (including 0 and 1), so there are “gaps” in

I2\Ran(F )×Ran(G) that need to be filled in (Geenens, 2020). And we can fill in these

gaps in all sorts of ways leading to an identifiability issue. One method described by

Rüschendorf (2009) and Faugeras (2017) is the Distributional Transform in which we

essentially jitter the points. More precisely, consider the random variable X with

some distribution function F and let V ∼ U(0, 1), independent of X. Rüschendorf

(2009) defines the distributional transform of X by:

U := F (X, V ) = P (X < x) + V P (X = x). (3.1)

The big idea is that at any jump point of the distribution function, F , one uses

V to randomize the jump height. An equivalent representation is:

U = F (X−) + V (F (X) − F (X−)) (3.2)

where F (X−) denotes the left limit of X.

We demonstrate this transform in Example 3 with an empirical simulation in the
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univariate case.

Example 3. Suppose X ∼ F where F is the Poisson distribution with λ = 1. We

simulate 1000 independent copies of X, compute U using Equation (3.1) and plot the

empirical distribution of F (X) on the left and the empirical distribution of U on the

right. In Figure 3.1 below, one can clearly see that the distribution of U , unlike that

of X, is continuous.
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Figure 3.1: Empirical distribution functions of 1000 copies of X simulated from a
Poisson distribution with λ = 1 (left) and the Distributional Transformed Sample
(right).

Notice in Figure 3.1 the distributional transform, roughly speaking, smooths out

the cumulative distribution function. However, the fact that there are an infinite

amount of ways to go about this makes the solution non-unique (just think of all the

different values in [0,1] that you could “jitter” by).1

After understanding that copulas in the discrete case are not unique, one might

ask what is the huge issue about unidentifiability? We discuss some of the key issues

that arise when unidentifiability occurs next.
1It can be shown the set of copula functions C ∈ CH compatible with the joint distribution

function H can be quite large and lies between bounds referred to as Carley’s bounds C+
H , C−

H .
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3.2 The Copula Alone Does Not Model the Dependence Be-

tween X and Y

In the continuous case, X and Y have a unique underlying copula. Furthermore,

X and Y are independent if and only if the copula C = Π. Recall that Π, the

independence copula, is defined as:

Π(u, v) = uv, u, v ∈ (0, 1).

While C = Π still implies the independence between X and Y , the other way is

no longer true. We use an example from Genest & Nešlehová (2007) to demonstrate

this occurrence. We note that, unless stated otherwise, the examples later on are also

from Genest & Nešlehová (2007).

Example 4. Let X and Y be independent Bernoulli random variables with P (X =

0) = p and P (Y = 0) = q. Then C is a copula model for (X,Y) if and only if

C(p, q) = P (X = 0, y = 0) = pq. However, suppose that p = q = 1/2 and consider

C = (W + M)/2 where W and M are the lower and upper Fréchet-Hoeffding Bounds.

Then C(1/2, 1/2) = 1/4 = pq but C ̸= Π. This shows discrete copulas do not alone

characterize the dependence between X and Y . Thus, it is an issue because we can

model (in)dependence with different copulas, yet be compatible with C(p, q) = pq.

3.3 Concordance Measures Are Margin-Dependent

In the continuous case, measures like Kendall’s tau and Spearman’s rho provide

margin-free measures of dependence and thus they can be used to construct esti-

mation methods for the copula under specific parametric assumptions. But when the
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random variables are discrete, copula-based measures of dependence such as Kendall’s

tau or Spearman’s rho are margin-dependent. If the dependence cannot be modeled

by the copula alone and depends on the marginals, copulas become less useful in

characterizing the dependence structure.

Example 5. Let X and Y be Bernoulli RVs with P (X = 0) = p and P (Y = 0) = q.

Let r = P (X = 0, Y = 0) ∈ [max(0, p + q − 1), min(p, q)]. Then

τ(X, Y ) = ρ(X, Y ) = r − pq.

In the previous example, Kendall’s tau and Spearman’s rho now both rely on p

and q which are the marginal probabilities of P (X = 0) and P (Y = 0) respectively.

3.4 The Stochastic and Analytical Definitions of τ and ρ Do

Not Match

Recall that, when X and Y are continuous random variables with a unique underlying

copula, then τ(X, Y ) = τ(C) and ρ(X, Y ) = ρ(C). But when we have discrete random

variables, depending on our choice of copula, it may lead to different values for τ(C)

and ρ(C). Fortunately, there does exist a copula, namely the checkerboard copula,

such that the stochastic and analytical definitions of τ and ρ do coincide.

3.5 Perfect monotone dependence does not imply that |τ |

and |ρ| = 1

Let’s consider the following example that illustrates this issue.

Example 6. Suppose X and Y are Bernoulli random variables where P (X = 0) =
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P (Y = 0) = P (X = 0, Y = 0) = p where p ∈ (0, 1). Then Y = X almost surely and

τ(X, Y ) = ρ(X, Y ) = p(1 − p) < 1.

3.6 Copula Model Chosen Might Be Valid for Some Re-

stricted Discrete Distributions

Example 7. Let X and Y be independent Bernoulli random variables with P (X =

0) = p and P (Y = 0) = q and P (X = 0, Y = 0) = r. For i, j = 1, 2, let nij represent

the number of times that X = i, Y = j in a random sample of size n. The maximum

likelihood estimates of the three parameters are:

p̂n = n00 + n01

n
, q̂n = n00 + n10

n
, r̂n = n00

n
. (3.3)

Moreover, when we can write the joint distribution H of (X, Y ) as C(p, q) for some

copula C ∈ Cθ (family of copulas parametrized by θ), one has Cθ(p, q) = r so that the

maximum likelihood estimate, θ̂n is the unique value of θ such that Cθ̂n
(p̂n, q̂n) = r̂n.

Genest & Nešlehová (2007) assumes that this bivariate Bernoulli distribution stems

from a combination of univariate Bernoulli marginal distributional functions with a

Farlie-Gumbel-Morgenstern copula which is defined analytically for (u, v) ∈ [0, 1]2:

Cθ(u, v) = uv + θuv(1 − u)(1 − v), θ ∈ [−1, 1]. (3.4)

Then to find θ, we switch some variables around to get:

θ = r − pq

pq(1 − p)(1 − q) . (3.5)
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Next, to find the maximum likelihood estimator for θ, replace p, q, r with their max-

imum likelihood estimators defined in Equation (3.3) and get:

θ̂n = r̂n − p̂nq̂n

p̂nq̂n(1 − p̂n)(1 − q̂n) . (3.6)

Now suppose that the true values for this model were p = 0.3, q = 0.4 and r = 0.1452,

then we would get θ = 0.5. Everything works out fine and dandy here since we have a

plausible θ that is within bounds. However, Faugeras (2017) points that if we assume

the true values were p = 0.3, q = 0.4 and r = 0.175, then θ = 1.09127 > 1 which

violates the bounds we placed on θ, meaning it’s impossible given the Farlie-Gumbel-

Morgenstern model! Now suppose you are estimating the previous p, q, r from some

sample and get p̂ ≈ 0.31, q̂ ≈ 0.41, r̂ ≈ 0.174 which would give us θ̂ ≈ 0.906 which

is valid but given the true parameter values, we know that it is not valid! The other

way can very well happen too where you get estimates that indicate it is not valid

when it is in fact valid.

In this situation, the researcher can make both mistakes of inferring a seemingly

correct copula parameter value in an impossible model, or rejecting the correctly

specified model from an apparently incorrect copula parameter value.

3.7 The Copula Model is Unidentifiable

Consider Example 7 mentioned above. Because the Fairlie-Gumbel-Morgenstern fam-

ily of copulas model relatively weak dependence, we can instead choose another model

that we think might better represent the dependence structure. A few other choices

that one might pick are Plackett’s copula, or Ali-Mikhail-Haq (AMH) copula, or

Gaussian copulas. If we assume the true values are p = 0.3, q = 0.4, r = 0.1452, then

for each copula, it can be shown that we get the following θ values:
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1. Farlie-Gumbel-Morgenstern copula where θ ∈ [−1, 1]: θ = 0.5

2. Plackett copula where θ > 0, then θ = 1.6389

3. AMH where θ ∈ [−1, 1], then θ = 0.413223

This issue demonstrates one of the major problems that may arise when the copula

model is unidentifiable. Although it is possible to estimate the copula parameter once

we have assumed a certain copula model, there is no guarantee that the real data

generating process stemmed from our chosen copula model. Choosing the model is

now simply a matter of preference. In other words, for each model, we have inferred

some value for the dependence parameter, but how do we reconcile these different

values? After all, the value of the copula parameter only has meaning within the

arbitrarily chosen copula family. This makes it difficult, if not impossible, to make

any statement about the dependence structure, because each value of the copula

parameter only makes sense in the context of that particular copula family which is

arbitrarily chosen.

3.8 Are Copula Models for Discrete Data Interesting at All?

What should we do if we want to apply theoretically-sound inference methods to

measure dependence between discrete variables? Can we still use methods mentioned

in Chapter 2 regarding estimation and dependence measures? Some argue in favor

of using copulas. Regarding the lack of a unique copula, Trivedi & Zimmer (2017)

write, “this usually does not pose a problem in applied settings, as researchers use

copulas because the joint distribution F (y1, y2) is either not known or is difficult

to work with.” Moreover, statisticians like Genest & Nešlehová (2007), argue that

H(x, y) = C(F (x), G(y)) is a “bona fide” bivariate distribution. They also suggest
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that H inherits most (but not all) of the dependence properties of the copula from

which it came from and that θ can still be interpreted as a dependence parameter. In

addition, they claim “the fact that there exist (infinitely many) copulas for the same

discrete joint distribution does not invalidate models of this sort.” The mathematical

construction of discrete copula models is still valid and under certain constraints, can

prove to be viable and useful in simulations and robustness studies. However, when

dealing with count data, modeling and interpreting dependence through copulas is

subject to caution and inference for copula parameters from discrete data is difficult

as we have seen in this chapter.

The reader might also be curious if we even need to use copulas for discrete

variables. Can we use inference methods and construct measures based on the unique

subcopula instead? The answer to that question is yes but they have their own

array of problems as well. Tasena (2021) proposes an estimator of the subcopula

and Erdely (2016) proposes a dependence measure based on the subcopula. However,

further discussion on this matter strays from the focus of the thesis.

In conclusion, a lot of issues come up when the copula is unidentifiable. When

we can use more than one copula to characterize the dependence structure between

random variables, which one should we use? It turns out that there is actually

one copula that best represents the dependence structure: the checkerboard copula.

Genest, Nešlehová, & Rémillard (2017) writes

The weak convergence of the empirical checkerboard copula process is

shown to be sufficiently strong to derive the asymptotic behavior of a

broad class of functionals that are directly relevant for the development of

rigorous statistical methodology for copula models with arbitrary margins.

With this in mind, we move on to discussing the checkerboard copula.
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Chapter 4 Checkerboard Copulas and Checker-

board Copula Based Dependence Mea-

sure

Correlation doesn’t imply

causation, but it does waggle its

eyebrows suggestively and gesture

furtively while mouthing ’look over

there’.

Randall Munroe, - xkcd

Now that we have a solid foundation on copulas and also know the reasons why

copulas sort of sputter out when dealing with discrete variables, we now turn our

attention to the paper by Wei and Kim (2021) that motivated this thesis. In their

paper, they used a copula called the checkerboard copula to identify and measure the

regression dependence between an ordinal response variable and categorical explana-

tory variables in contingency tables.

Recall the motivation in Chapter 1 behind the need for such methods. Categori-

cal data analysis with ordinal responses is important in several fields and taking into

consideration the intrinsic ordering of ordinal variables can give more powerful infer-

ences. One step in categorical analysis is exploring the various dependence structures
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among the variables for exploratory modeling. A dependence structure of particular

interest is that of the regression dependence which many model-based approaches

have been constructed. Comparatively, there are fewer model-free approaches to ex-

amining dependence structures in categorical data, and most of these approaches do

not distinguish between explanatory variable(s) and response variable, i.e., they do

not focus on regression dependence. To address this, Wei & Kim (2021) propose a

new model-free measure, based on the checkerboard copula, to identify and quantify

the regression dependence in multivariate categorical data with an ordinal response

variable and categorical (nominal or ordinal) explanatory variables . It can be shown

that the checkerboard copula constructed through bilinear interpolation of the bi-

variate distribution function, uniquely links the marginal distributions of discrete

random variables to their joint distribution function. Research has demonstrated

that the checkerboard copula has many good properties and can best represent the

dependence structure among discrete variables (Genest & Nešlehová, 2007; Genest,

Nešlehová, & Rémillard, 2014, 2017; Nešlehová, 2007).

In the upcoming sections, we will first introduce and define the checkerboard

copula in Section 4.1 before going into detail regarding their proposed methodology,

which is comprised of three parts:

• The checkerboard copula score [Section 4.2]: This is newly proposed score for

ordinal variables that takes into account their intrinsic ordering.

• The checkerboard copula regression [Section 4.3]: This is a model-free approach

towards identifying the regression dependence in categorical data. Note then

we can use it to predict the category of the ordinal response variable from the

combination of categories of explanatory variables.

• The checkerboard copula association measure (CCRAM) [Section 4.4]: This is

an index to quantify the strength of association identified by the checkerboard
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copula regression. It is essentially the average proportion of variance in the

ordinal response variable (with respect to its checkerboard copula score and its

marginal distribution) attributable to the checkerboard copula regression.

One might think of the CCRAM as an R2-like measure but for the checkerboard copula

regression. We will then explain in Section 4.5 how Wei & Kim (2021) estimated the

CCRAM in a model-free way while proposing a new idea to estimate the CCRAM

based on a parametric model. For the sake of simplicity and clarity, we will explain

and demonstrate this methodology in 2 dimensions in this chapter, but it should be

noted that all apply to higher dimensions too.

4.1 Checkerboard Copula

Suppose X, Y are ordinal variables with I and J ordered categories: {x1 < . . . < xI}

and {y1 < . . . < yJ} respectively. We can form a 2-way contingency table with joint

probability mass function of X and Y denoted as P = {pij}, where i = 1, . . . I;

j = 1, . . . , J ; and ∑I
i=1

∑J
j=1 pij = 1. The ith row and jth column marginal probability

mass functions are denoted by pi• = ∑J
j=1 pij and p•j = ∑I

i=1 pij. The conditional

probability mass functions of Y given X and vice versa are denoted by pj|i = pij

pi•
and

pi|j = pij

p•j
, if p•j ̸= 0 and pi• ̸= 0, respectively, and zero otherwise.

Furthermore, we denote the range of the marginal distributions of X and Y to

be D1 = {u0, . . . , ui, . . . , uI} where u0 = 0, uI = 1 and ui = ∑I
i=1 pi• and D2 =

{v0, . . . , vj, . . . , vJ} where v0 = 0, vJ = 1, and vj = ∑J
j=1 pj•. Then, from Theorem 2,

there exists a unique subcopula CS on D1 × D2 such that:

H(x, y) = CS(F (xi), G(yj)) = CS(ui, vj) =
∑
s≤i

∑
t≤j

cS(us, vt) (4.1)

where H(x, y) is the joint distribution function for X and Y ; F (x), G(y) are its
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marginal distributions and cS(ui, vj) = pij is the probability mass function of

CS(ui, vj).

One can then extend the subcopula CS on D1 × D2 to a copula, say C, on I2 =

[0, 1]2 via the so-called bilinear extension which we explain below. This is called the

bilinear extension copula, also known as the checkerboard copula. We thus define the

checkerboard copula and its density function as such:

Definition 7. Let CS be the subcopula on D1 × D2 satisfying (4.1). For any (u, v) ∈

[0, 1]2, let u1, u2 be the least and greatest elements of D1, the closure of set D1 such

that u1 ≤ u ≤ u2. And let v1, v2 be the least and greatest elements of D2, the closure

of set D2 such that v1 ≤ v ≤ v2. Then the bilinear extension copula (checkerboard

copula), C✠(u, v), is defined by:

C✠(u, v) = (1 − λ)(1 − µ)CS(u1, v1) + (1 − λ)µCS(u1, v2)

+λ(1 − µ)CS(u2, v1) + λµCS(u2, v2)
(4.2)

where λ = u−u1
u2−u1

, µ = v−v1
v2−v1

. Note that if u ∈ D1, then u1 = u = u2; if v ∈ D2, then

v1 = v = v2. Also, if u1 = u2, then λ = 1, similarly, if v1 = v2, then µ = 1.

Figure 4.1 demonstrates the idea behind the checkerboard copula in which we bi-

linearly interpolate CS on the unit square. The horizontal axis is the marginal distri-

bution function of X, i.e., F (x) = u and the vertical axis is the marginal distribution

function of Y , i.e., G(y) = v. The points labeled (u1, v1), (u1, v2), (u2, v1), (u2, v2) are

as defined in Definition 7 and (u, v) ∈ [0, 1]2 is the point we want to interpolate at.

Applying the bilinear extension, i.e., Equation (4.2), to all points on the unit square

would smooth out the subcopula, so that the resulting checkerboard copula would be

uniquely determined and have continuous uniform marginals. See Figure 4.2 for a 3D

visualization of this idea.

48



Figure 4.1: Plot of the Checkerboard Copula

By taking the derivatives of C✠ with respect to u, v, the checkerboard copula

density function c✠(u, v) is defined:

c✠(u, v) = pij

pi•p•j
, if ui−1 < u ≤ ui, vj−1 < v ≤ vj. (4.3)

The conditional density of V given U is defined as:

c✠(u, v) = c✠(v|u)
c✠(u) = pj|i

p•j
. (4.4)

Observe that from Definition 7, it follows that C✠ coincides with the unique subcopula

CS of Equation (4.1). Moreover, Nešlehová (2007), Genest, Nešlehová, & Rémillard

(2017), Rüschendorf (2009) obtained a stochastic representation of C✠(u, v) where

C✠(u, v) is the joint distribution of two standard uniform variables U and V , the

distributional transform of the ordinal variables X and Y :

U = F (X−) + [F (X) − F (X−)]W1 and V = G(Y −) + [G(Y ) − G(Y −)]W2. (4.5)

Here, F (X−) refers to the left limit of F , while W1 and W2 denote independent
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uniform random variables on [0, 1], independent of X and Y . Roughly speaking, the

stochastic representation in Equation (4.5) allows us to “jitter” the discontinuous

function using W1, W2. Overall, the idea behind the checkerboard copula is that it

is a smooth version of the subcopula in that it spreads the mass uniformly over the

hyper rectangle.

Throughout the next several sections in this chapter, we will use a toy example

provided by Wei & Kim (2021) to help the readers understand this methodology.

Example 8. Suppose X and Y represent the dose of a treatment drug for acute

migraines and the severity of migraine pain after treatment respectively with I = 5

and J = 3 ordered categories. (x1, x2, x3, x4, x5) = (very low, low, medium, high, very

high) and (y1, y2, y3) = (mild, moderate, severe).

X
Y

y1 y2 y3

x1 0 0 2/8
x2 0 1/8 0
x3 2/8 0 0
x4 0 1/8 0
x5 0 0 2/8

Table 4.1: Joint pmf of X and Y, P = {pij}

Table 4.1 displays the joint probability mass function of X and Y . Here, we

note that Y has a quadratic relationship with X since the level of Y decreases and

then increases as the level of X increases. Note that Y is a function of X but not

vice versa. For a given category of X, there is only one category of Y with joint

probability that is non-zero. The marginal probability mass functions of X and

Y are pi• ∈ {2/8, 1/8, 2/8, 1/8, 2/8} and p•j ∈ {2/8, 2/8, 4/8}. The ranges of the

marginal cdfs of X and Y are D1 = {u0, u1, u2, u3, u4} = {0, 2/8, 3/8, 5/8, 6/8, 1} and
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D2 = {u0, u1, u2} = {0, 2/8, 4/8, 1}, respectively. We illustrate the subcopula CS and

its density, as well as the checkerboard copula C✠ and its density in Figure 4.2.
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Figure 4.2: Surface plots of the subcopula (top left) and its density (top right)
and surface plots of the checkerboard copula (bottom left) and its density (bottom
right).

Figure 4.2 shows the subcopula (top left) and its density (top right) alongside

the checkerboard copula (bottom left) and its density (bottom right). Notice how the

checkerboard copula is a “smoothed” version of the subcopula. In addition, we include

Figure 4.3 from Wei & Kim (2021) which is the projection of the bottom right 3D

plot in Figure 4.2 to a 2D plot. Here, intensity of color represents the corresponding

density which shows that the checkerboard copula density inherits the dependence

between X and Y. In their example, they use U1 and U2 which in our notation is

U1 = U and U2 = V .
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Figure 4.3: Checkerboard Copula Density (Wei & Kim, 2021)

4.2 Checkerboard Copula Score

Wei & Kim (2021) proposed a new type of score for ordinal variables obtained from

the checkerboard copula in order to take advantage of the intrinsic ordering. As

defined in Definition 7 and shown in Figure 4.3, the checkerboard copula C✠ is a

smooth version of the subcopula associated with the ordinal random vector (X, Y )

in that it spreads the mass uniformly over each rectangle [ui−1, ui] × [vj−1, vj] where

ui, vj are elements of the ranges of the marginal cdfs of X and Y . Furthermore, C✠ is

the joint distribution function of (U, V ) in Equation (4.5) which is the distributional

transform of X, Y . Motivated by these properties, they define a new random variable

Sj where j ∈ {1, 2} to be a transformation of X and Y via U and V : S1 = E[U |

X] and S2 = E[V | Y ] respectively. Wei & Kim (2021) proved that S1 and S2

are ordinal random variables with numerical support values {s1
1, · · · , s1

i , · · · , s1
I} and

{s2
1, · · · , s2

j , · · · , s2
J}, respectively, where s1

i = (ui−1+ui)
2 and s2

j = (vj−1+vj)
2 and that S1

and S2 have the same probability mass functions as X and Y respectively. They then
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proposed the support values of S1 and S2 as a new type of score for X and Y , which

they called checkerboard copula scores.

Definition 8. The checkerboard copula scores of ordinal variables X and Y are:

{s1
1, . . . , s1

I}, s1
i = (ui−1 + ui)

2 (4.6)

{s2
1, . . . , s2

J}, s2
j = (vj−1 + vj)

2 (4.7)

for i ∈ {1, · · · , I}, j ∈ {1, · · · , J} and ui, vj are given previously.

We can think of the checkerboard copula scores as the set of the average of the

marginal cumulative distributions evaluated at every two consecutive categories of X

and Y respectively. For those who have dealt with ordinal categorical data analysis

before, this might look very familiar as it goes by another term, ridits (Bross, 1958).

Here are some properties of the checkerboard copula scores; for proofs, see the

Appendix of Wei & Kim (2021):

• The scores have the same ordering as the categories of X and Y : 0 < s1
1 < · · · <

s1
i < · · · < s1

I < 1 and 0 < s2
1 < · · · < s2

j < · · · < s2
J < 1.

• The conditional expectation of the stochastic representation in Equation (4.5)

given X = xi with respect to U and is equal to the ith checkerboard score for

X: E(U |X = xi) = s1
i . Similarly, the conditional expectation of the stochastic

representation in Equation (4.5) given Y = yj with respect to V and is equal

to the jth checkerboard score for Y : E(V |Y = yj) = s2
j .

• Mean and variance of S1 (S2) are µS1 = 0.5 (µS2 = 0.5) and σ2
S1 =

1
4

∑I
i=1 ui−1uipi• (σ2

S2 = 1
4

∑J
j=1 vj−1vjp•j). The maximum variance is attained

when pi• = 1
I

(p•j = 1
J
).

Example 9 (Example 8 Continued). The checkerboard copula scores for X and Y
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are (2/16, 5/16, 8/16, 11/16, 14/16) and (2/16, 6/16, 12/16) respectively. The means

and variances of S1 = E[U | X] and S2 = E[V | Y ] are (0.5, 81/1024) for S1 and (0.5,

9/128) for S2.

4.3 Checkerboard Copula Regression

Next, Wei & Kim (2021) proposed the checkerboard copula regression as follows:

Definition 9. Let U and V from Equation (4.5) be standard uniform variables asso-

ciated with the checkerboard copula C✠(u, v) from Equation (4.2). The checkerboard

copula regression function of V on U is defined as follows for ui−1 < u < ui,

rV |U(u) ≡ Ec✠(V |U = u) =
∫ 1

0
vc✠(v|u)dv =

J∑
j=1

pj|is
2
j , (4.8)

where c✠(v|u) is the conditional density function of V given U. This function can

be viewed as the mean checkerboard copula score of Y with respect to the conditional

distribution at the ith category of X.

Example 10 (Example 8 continued). Observe from Table 4.2 and Figure 4.4 that

the regression of V on U captures the quadratic dependence because it reflects the

changes in D2 associated with Y according to the changes in the D1 associated with

X and it is only equal to one of the checkerboard scores of Y for each interval in U .

Table 4.2: Checkerboard copula regression of V on U.

u rV |U(u)

[0, 2/8] 12/16
(2/8, 3/8] 6/16
(3/8, 5/8] 2/16
(5/8, 6/8] 6/16
(6/8, 1] 12/16
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Figure 4.4: Regression of V on U (Here U1 = U and U2 = V ) (Wei & Kim, 2021).

Note that this regression function can also be used in predicting the category of

the ordinal response variable given a category of the explanatory variable. Suppose

Y is the response variable and X is the explanatory variable. For a given category

of X, we can find the corresponding u∗ ∈ D1 and obtain the predicted value of the

checkerboard copula regression, v∗ = rV |U(u∗). From the range D2 of the marginal

distribution Y , we get j∗ and vj∗ such that vj∗−1 < v∗ ≤ vj∗ and obtain the predicted

category of the response variable Y , yj∗ . Wei & Kim (2021) show that the prediction

of the response variable is invariant under permutation of categories of explanatory

variables, implying it can also be used for nominal explanatory variables.

Example 11 (Example 8 continued). Using the checkerboard copula regression, we

obtain predictions of Y for each category of X. Say we are given X = 2, then the

corresponding u∗2 ∈ D1 = {0, 2/8, 3/8, 5/8, 6/8, 1} is 3/8 and then rV |U(3/8) = 3/8

and because 0.25 ≤ 3/8 ≤ 0.50, the predicted category of Y given X = 2, is the 2nd

category of Y . We can apply the same prediction method and predict Y for all levels

of X (category of X: predicted Y ) = (1:3), (2:2), (3:1), (4:2), (5:3). Note that these

predictions also reflect the quadratic relationship.
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4.4 Checkerboard Copula Regression Association Measure

(CCRAM)

The checkerboard copula regression association measure is then built upon the

checkerboard copula regression.

Definition 10. For the ordinal contingency table of X and Y in a I × J table, the

checkerboard copula regression association measure of Y on X is:

ρ2
(X→Y ) ≡

V ar(rV |U(U))
V ar(V ) = E[(rV |U(U) − 1/2)2]

1/12 = 12
I∑

i=1

 J∑
j=1

pj|is
2
j − 1/2

2

pi•.

(4.9)

Here are some properties of the checkerboard copula regression association mea-

sure:

1. 0 ≤ ρ2
(X→Y ) ≤ 12σ2

S2 < 1 where σ2
S2 is the variance of S2. Recall that S2 =

E(V |Y ).

2. If X and Y are independent, then ρ2
(X→Y ) = 0.

3. If ρ2
(X→Y ) = 0 then rV |U(U) = E(V ) = 1/2 and cor(U, V ) = 0.

4. ρ2
(X→Y ) = 12σ2

S2 if and only if Y = g(X) almost surely for some measurable

function g.

5. ρ2
(X→Y ) <

V ar(rV |U (U))
σ2

S2
.

6. ρ2
(X→Y ) is invariant over permutation on the categories of X.

7. ρ2
(X→Y ) is invariant over permutation on the categories of Y only when Y is

binary.
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Let’s add some comments regarding the above properties:

1. From properties 1 - 4, we can see that the proposed measure can identify lin-

ear/nonlinear relationships between X and Y .

2. From property 1, the measure ranges from 0 to 12σ2
S2 .

3. Properties 3 and 4 tell us that if the measure is 0, then it means the explanatory

variables contribute nothing to the construction of the checkerboard copula

regression function and 12σ2
S2 is an upper bound for the measure.

4. Property 5 tells us that the measure is the lower bound on the average pro-

portion of variance for Y with respect to its checkerboard copula scores and its

marginal distribution explained by the checkerboard copula regression.

5. Properties 6 and 7 imply that the measure can be applied to nominal explana-

tory variables and a binary response variable.

Notice from property 1 that the upper bound of the measure in fact depends on the

marginal distribution of Y . Thus, Wei & Kim (2021) further propose a scaled version

such that the scaled CCRAM ρ2
(X→Y ) ranges from 0 to 1:

ρ2∗
(X→Y ) =

ρ2
(X→Y )

12σS2

. (4.10)

Example 12 (Example 8 continued). Using the checkerboard copula regression of

V on U, we calculated the measure, upper bound and scaled measure to be 27/32,

27/32, and 1 respectively. The measure being 1 implies that X perfectly explains the

variation of Y . Note that this result stems from the fact that the regression equals

only one checkerboard score of Y for each interval in U .
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4.5 Estimation

4.5.1 Model-Based Estimation of the Checkerboard Copula Regression

Association Measure From Wei & Kim (2021)

Wei & Kim (2021) also provide model-free estimators of the checkerboard copula

score, checkerboard copula regression, and checkerboard copula based association

measure where they use the observed cell count n = {nij} in an I × J contingency

table for two ordinal variables X, Y . The marginal sums of the ith category of X are

denoted as ni• = ∑J
j=1 nij and the marginal sums of the jth category of Y are denoted

as n•j = ∑I
i=1 nij. Estimators for pij, pi•, p•j, pj|i, pi|j as well as the definition of n are

given below:

1. pij : p̂ij = nij/n.

2. pi• : p̂i• = ni•/n.

3. p•j : p̂•j = n•j/n.

4. pi|j : p̂i|j = p̂ij/p̂•j if p̂•j ̸= 0, else 0.

5. pj|i : p̂j|i = p̂ij/p̂i• if p̂i• ̸= 0, else 0.

6. n : ∑I
i=1

∑J
j=1 nij.

In addition, the range of the marginal cdf of X, D1, is estimated by D̂1 =

{û0 · · · ûi · · · ûI} where û0 = 0 and ûi = ∑i
s=1 p̂s•. Similarly, the range of the marginal

cdf of Y , D2, is estimated by D̂2 = {v̂0 · · · v̂j · · · v̂J} where v̂0 = 0 and v̂j = ∑j
t=1 p̂•t.

We can use the above estimators to find the following estimates in a model-free

way:

• Checkerboard copula score for Y : {ŝ2
1, ..., ŝ2

J} where ŝ2
j = (v̂j−1 + v̂j)/2
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• Variance of S2: σ̂2
Ŝ2

=
( ∑J

j=1 v̂j−1v̂j p̂•j
)
/4

• Checkerboard copula regression of V on U :

r̂V |U(u) =
J∑

j=1
p̂j|iŝ

2
j for ûi−1 < u ≤ ûi. (4.11)

With the estimated checkerboard copula regression and the prediction procedure from

Example 10, we can obtain the predicted category of a response variable for each

category of the explanatory variable. Like before, for some category of X, we can

find the corresponding û∗ ∈ D̂1 and obtain the estimated value of the checkerboard

copula regression, v̂∗ = r̂V |U(û∗). Then from D̂2, we can find an j∗ and v̂∗j such that

v̂j∗−1 < v̂∗ ≤ v̂j∗ and obtain the predicted category of Y , ŷj∗ .

Finally, we estimate the measure ρ2
(X→Y ) by:

ρ̂2
(X→Y ) = 12

I∑
i=1

 J∑
j=1

p̂j|iŝ
2
j − 1

2

2

p̂i• (4.12)

and the scaled version by:

ρ̂2∗
(X→Y ) =

ρ̂2
(X→Y )
12σ̂2

Ŝ2

. (4.13)

4.5.2 Model-Based Estimation of the Checkerboard Copula Regression

Association Measure

We propose a new way of estimating the CCRAM, one that relies on parametric

model-based estimates of the joint probabilities. To this end, we consider regression

models used for ordinal responses to take advantage of the category ordering. A pop-

ular method is the cumulative logit model which can be thought of as a generalization

of the logistic regression model when the response variable has more than two cate-

gories. For a response variable Y , the cumulative probability for outcome category n
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is

P (Y ≤ j) =
j∑

i=1
P (Y = i)

where j = 1, · · · , c and c denotes the number of categories. Then the logits of the

cumulative probabilities, called cumulative logits, are:

logit[P (Y ≤ j)] = log
[

P (Y ≤ j)
1 − P (Y ≤ j)

]

for j = 1, · · · , c − 1. Note that we do not use the last category since the probability

of observing any category less than or equal to the last category is 1 (Agresti, 2019).

See Fullerton & Anderson (2021) for a comprehensive overview of ordered regression

models.

Consider a categorical variable X and an ordinal variable Y with I and J or-

dered levels respectively. Denote the levels of X as (x1, · · · , xi, · · · , xI) and Y as

(y1, · · · , yj, · · · , yJ). Suppose we fit a proportional odds cumulative logit model

(proportional odds means we assume the explanatory variables has the same ef-

fect for all cumulative logits). Once fitted, we are able to obtain estimated con-

ditional probabilities of pM
j|i, which we denote p̂M

j|i, to indicate it is model-based, i.e.,

p̂M
j|i = P (Y = yj|X = xi) where i = 1, · · · , I and j = 1, · · · , J . Then we estimate pi•

by p̂i• = ni•/n and with these two estimates, we estimate the joint probability mass

function of X and Y , denoted as P̂ M = {p̂M
ij } by the chain rule:

p̂M
j|ip̂i• = p̂M

ij .

With our model-based estimate of the joint pmf of X and Y , we propose model-based

estimates for the following:

1. pij : p̂M
ij .
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2. pi• : p̂M
i• = ∑J

j=1 p̂M
ij .

3. p•j : p̂M
•j = ∑I

i=1 p̂M
ij .

4. pi|j : p̂M
i|j = p̂M

ij /p̂M
•j if p̂M

•j ̸= 0 else 0.

5. pj|i : p̂M
j|i = p̂M

ij /p̂M
i• if p̂M

i• ̸= 0 else 0.

In addition, the range of the marginal cdf of X, D1, is estimated by D̂M
1 =

{ûM
0 · · · ûM

i · · · ûM
I } where ûM

0 = 0 and ûM
i = ∑i

s=1 p̂M
s• . Similarly, the range of the

marginal cdf of Y , D2, is estimated by D̂M
2 = {v̂M

0 · · · v̂M
j · · · v̂M

J } where v̂M
0 = 0 and

v̂M
j = ∑j

t=1 p̂M
•t .

We can use the above estimators to find the following estimates in a model-based

way:

• Checkerboard copula score for Y : {ŝ2M
1 , ..., ŝ2M

J } where ŝ2M
j = (v̂j−1 + v̂j)/2

• Variance of S2: σ̂2M
ŜM

2
=

( ∑J
j=1 v̂M

j−1v̂
M
j p̂M
•j

)
/4

• Checkerboard copula regression of V on U :

r̂M
V |U(u) =

I∑
i=1

p̂M
j|iŝ

2M
j for ûM

i−1 < û ≤ ûM
i . (4.14)

Finally, we estimate the model-based ρ2,M
(X→Y ) by:

ρ̂2M
(X→Y ) = 12

I∑
i=1

 J∑
j=1

p̂M
j|iŝ

2M
j − 1

2

2

p̂M
i• (4.15)

and the scaled version by:

ρ̂2∗M
(X→Y ) =

ρ̂2M
(X→Y )

12σ̂2M
ŜM

2

(4.16)

With this novel measure at our disposal and two methods of estimation, we now turn

towards simulations to observe its properties as well as applying it on some real world

data.
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Chapter 5 Simulations and Real World Applica-

tion

Don’t think—use the computer.

Dyke (tongue in cheek) (1997)

In this section, the performance of the model-free CCRAM is evaluated by simu-

lating various types of contingency tables and comparing it to model-based measures

of CCRAM. A discussion follows regarding the potential of the model-free CCRAM

as a goodness of fit test. The proposed measure is then applied to a real world data

set.

5.1 Aims

The aim of this simulation study is to evaluate the model-free CCRAM under various

types of association (no association, linear, and nonmonotone nonlinear) in a 2-way

I × J contingency table with a categorical (nominal / ordinal) explanatory variable

X and an ordinal response variable Y . Moreover, we compare the measure when

estimated from the data itself (i.e., model-free) to measures estimated from both a

model that is well-fitted and a model that is a poorly-fitted. Note that, in order to

extend their simulation studies, we emulate the simulation setup of Wei & Kim (2021)

which can be found in Appendix B of Wei & Kim (2021).
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5.2 Simulation Set Up for an Ordinal Variable X

We consider five simulation factors in our design:

1. The type of association between X and Y

2. The magnitude of association

3. The marginal distributions of X and Y

4. Sample Size

5. Table Size, the number of categories of X and Y .

For the association scenarios, we considered three association patterns between X

and Y :

1. No association - X and Y have no association

2. Linear pattern - Y increases linearly as X increases

3. Nonmonotone nonlinear pattern - Y increases quadratically as X linearly in-

creases.

In order to simulate the contingency table with different association patterns, para-

metric ordinal response models also known as proportional odds cumulative logit

models (CLM) were considered:

1. logit[P (Y ≤ y|X)] = αy, for no association

2. logit[P (Y ≤ y|X)] = αy − βX, for linear and monotone nonlinear association

3. logit[P (Y ≤ y|X)] = αy − β1X − β2X
2 for nonmonotone nonlinear association
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where y = 1, 2, · · · , J −1, i.e. denotes all but the last category of Y . The betas, β, β1,

and β2 are the regression coefficients and the alphas, αys, are the intercepts such that

α1 < α2 < ... < αJ−1. As will be explained later, the regression coefficients determine

the magnitude of association and the intercepts determine the marginal distribution

of Y .

For no association and linear association, a CLM with one predictor X

was used with five values of beta indicating the magnitude of association,

β = (0, 0.25, 0.85, 1.4, 2): (no, weak, moderate, strong, very strong). Notice that

β = 0 implies no effect of X on Y which is exactly what we want for no association.

For nonmonotone nonlinear association, we used linear and quadratic terms of X in

our cumulative logit model where (β1, β2) = (12, 3) for tables of size 3x3 and 3x5 and

(β1, β2) = (18, 3) for tables of size 5x3 and 5x5.1

For the desired associations to be obtained, we also specified the marginal distribu-

tions of X and Y . For no association, linear association, and nonmonotone nonlinear

association, we considered a discrete uniform distribution for X and Y which we

denote as (X, Y ) = (Unif(1, I), Unif(1, J)).

For our sample size, we considered n = (500, 1000, 2000) and considered I × J

contingency tables of size 3 × 3, 3 × 5, 5 × 3, 5 × 5.

Under each association pattern (none, linear, nonmonotone nonlinear), we consid-

ered:

1. No Association: 1 association level × 1 marginal distribution of (X, Y )× 3

sample sizes × 4 table sizes = 12 experimental conditions.

2. Linear Association: 4 association levels × 1 marginal distribution of (X, Y ) × 3
1In the original paper of Wei and Kim (2021), it stated that β1 = 12 across all table sizes;

however, we were unable to replicate their results. We emailed the authors and discovered that they
used different β1 values to get the desired simulation setup. For comparison purposes, we used the
same β1 values as used in their study for different table sizes.
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sample sizes × 4 table sizes = 48 experimental conditions

3. Nonmonotone nonlinear association: 1 association level × 1 marginal distribu-

tion of (X, Y ) × 3 sample sizes × 4 table sizes = 12 experimental conditions.

Under these various conditions, we simulated 1000 contingency tables using the fol-

lowing algorithm:

• Generate data given some cumulative logit model under the experimental condi-

tion, i.e., find the theoretical marginal probability mass function of X, which we

denote with P T
X , and the conditional probability mass function from the model,

P T
j|i, where i ∈ {1, · · · , I} and j ∈ {1, · · · , J} and sample from a multinomial

distribution using the true joint probabilities, P T = {pT
ij}. For instance, if X

is discretely uniform from 1 to 3, the theoretical probability of observing each

value (1, 2, or 3) is P (X = x) = 1/3, where x ∈ {1, 2, 3}; using the chosen

model we get P (Y = y|X) and calculate the theoretical joint probability mass

function, P (X = x, Y = y).

• Next, fit a cumulative logit model of good fit and a cumulative logit model

of poor fit. For no association, fit an intercept only model as the well-fitted

model and a linear model as the poorly-fitted model. For linear association,

fit a linear model as the well-fitted model and fit an intercept only model as

the poorly-fitted model. For nonmonotone nonlinear association, fit y ∼ x + x2

as the well-fitted and consider two poorly-fitted models, a linear model and an

intercept only model.

• Use Pearson’s Goodness of Fit test to ensure that the first model is a good fit

and that the other model(s) are a poor fit. If both the good model is a good fit

and the poor model is a poor fit, we move on to the next step, else repeat step
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one. Refer to section 3.5.1 of Agresti (2010) for more detail on how to conduct

Goodness of Fit tests.

• Then, we consider the estimation procedure proposed in Section 4.5.2 where we

calculate the model-based estimated joint probability mass function from the

estimated conditional probability mass function and the estimated marginal

probability function, i.e., p̂i• ∗ p̂M
j|i = p̂M

ij . Similarly, the model-free estimated

joint pmf is calculated using just the data, i.e., p̂ij = nij

n
.

• Calculate the model-free CCRAM using Equation (4.12) and the model-based

CCRAM using Equation (4.15) for both the well-fitted models and the poorly-

fitted models.

We then present the simulation results of estimated CCRAMs using boxplots. Con-

sidering we have 72 experimental conditions, not all boxplots were included in this

section. Instead, we include boxplots of size 3x5 for no association and linear as-

sociation and all boxplots of the nonmonotone nonlinear association for the sake of

brevity. The remaining boxplots can be found in Appendix B.

5.3 Simulation for No Association and Linear Association

To perform our simulations of contingency tables with no association and linear as-

sociation, we apply the following the cumulative logit model (CLM) with a single

predictor:

gy(X) = log(P (Y ≤ y|X)
P (Y > y|X)) = αy − βX, y = 1, · · · , J − 1 (5.1)

to simulate the contingency tables with no association and linear association.
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Table 5.1: Simulation setup for no association and linear association for the CLM
with an ordinal explanatory variable X. β = (0, 0.25, 0.85, 1.4, 2) for no, weak, mod-
erate, strong, and very strong association, respectively. The αys are given in the
right column below, in the ascending order of the association levels. X is uniformly
distributed from 1 to 3 or 5 corresponding to the table size.

Table Size CLM Model αys for No, Weak, Moderate, Strong, Very Strong
Association

3x3 gy(X) = αy − βX1,
y = 1, 2

αy = [−0.69, 0.69], αy = [−0.21, 1.2],
αy = [0.93, 2.48], αy = [1.9, 3.7], αy = [2.9, 5.1]

3x5 gy(X) = αy − βX1,
y = 1, 2, 3, 4

αy = [−1.39, −0.41, 0.41, 1.39],
αy = [−0.9, 0.09, 0.91, 1.9],
αy = [0.17, 1.25, 2.16, 3.23],
αy = [1.05, 2.27, 3.33, 4.55],
αy = [1.90, 3.34, 4.66, 6.10]

5x3 gy(X) = αy − βX1,
y = 1, 2

αy = [−0.69, 0.69], αy = [0.04, 1.47],
αy = [1.63, 3.47], αy = [2.95, 5.45], αy = [4.30, 7.69]

5x5 gy(X) = αy − βX1,
y = 1, 2, 3, 4

αy = [−1.39, −0.41, 0.41, 1.39],
αy = [−0.67, 0.33, 1.17, 2.17],

αy = [0.76, 2, 3.1, 4.33],
αy = [1.84, 3.46, 4.95, 6.55],

αy = [2.9, 5, 7, 9]

In the case of no association and linear association, data for X were uniformly

distributed over 1 to I (denoted as Unif(1, I)). We use the same values of αys from

Appendix B of Wei & Kim (2021) which were selected such that the marginal dis-

tribution of Y is uniformly distributed over 1 to J , denoted as Unif(1, J)). Table

5.1 contains the specific values of the coefficients and intercepts used to obtain the

desired association scenarios and distributions.

5.4 Nonmonotone Nonlinear Association

For the simulation of a contingency table with a nonmonotone nonlinear association,

we consider the CLM with linear and quadratic terms:

gy(X) = log(P (Y ≤ y|X)
P (Y > y|X)) = αy − βX − 3X2, y = 1, · · · , J − 1, (5.2)
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Table 5.2: Simulation setup for nonmonotone nonlinear association for the CLM
with an ordinal explanatory variable X. β = −12 in the 3x3 and 3x5 table and
β = −18 in the 5x3 and 5x5 table. X is uniformly distributed from 1 to 3 or 5
corresponding to the table size.

Table Size CLM Model αys for Weak, Moderate, Strong, Very Strong
Association

3x3 gy(X) = αy + 12βX − 3X2,
y = 1, 2 αy = [−10.92, −8.91]

3x5 gy(X) = αy + 12βX − 3X2,
y = 1, 2 αy = [−11.98, −10.46, −9.28, −8.11]

5x3 gy(X) = αy + 12βX − 3X2,
y = 1, 2 2 αy = [−24.52, −16.62]

5x5 gy(X) = αy + 12βX − 3X2,
y = 1, 2 αy = [−25.92, −23.91, −19.51, −15.01]

where β = −12 for 3x3 and 3x5 contingency tables and β = −18 for 5x3 and 5x5

contingency tables.

Data for X were generated so that they were uniformly distributed over 1 to I.

Then values of αys were selected such that the marginal distribution of Y is uniformly

distributed over 1 to J . Table 5.2 displays the values of the coefficients and intercepts

to obtain the desired association scenarios and distributions. See footnote 1 on page

65 for more details about these β values.

5.5 Simulation Set Up for a Nominal Variable X

For our simulations where X is a nominal explanatory variable with I levels, we

employ the proportional odds cumulative logit model where we consider X as a factor

with I − 1 indicator variables:

gy(X) = logit[P (Y ≤ y|X)] = αy + τ1ω1 + · · · + τI−1ωI−1,
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where y = 1, · · · , J −1, αys are the intercepts such that a1 < · · · < aJ−1, ω1, · · · , ωI−1

are the indicator variables of X and τ1, · · · , τI−1 are the coefficients that determine the

effect of each level of X. For identifiability, τI = 0, i.e., the last category of X is used

as the reference. Moreover, the coefficients were chosen to determine the magnitude

of the association between X and Y and the intercepts were chosen to determine the

marginal distribution of Y .

Under the cumulative logit model we specified, we considered these factors: table

size, sample size, and magnitude of association. For our table size and sample size, we

repeated the values from the previous simulation, so 3x3, 3x5, 5x3, 5x5 and n = (500,

1000, 2000). For magnitude of association, we considered the levels of no association,

weak, moderate, strong, very strong association. Moreover, we employed the discrete

uniform distribution for X, and αys were similarly chosen to get a discrete uniform

marginal distribution for Y. Likewise, we followed the aforementioned algorithm for

each experimental condition to get 1000 tables and computed the measure and pre-

sented with boxplots. Table 5.3 displays the values of the coefficients and intercepts

to obtain the desired association scenarios and distributions.

5.6 Simulation Study Results

In this section, we present the results of our simulations by presenting boxplots of

3x5 contingency tables for no association and linear association, those of all table

sizes for nonmonotone association, and those of 3x5 tables for cases with a nominal

explanatory variable. Boxplots of model-free CCRAM and model-based CCRAM

(well-fitted and poorly-fitted) are displayed side by side.

70



Table 5.3: Simulation setup for the CLM with a nominal explanatory variable X.
Pairings of (αy, τx) are listed for no, weak, moderate, strong, very strong association
in each contingency table.

Table Size CLM Model αys and τs for No, Weak, Moderate, Strong, Very Strong Association

3x3 gy(X) = αy + τ1ω1 + τ2ω2,
y = 1, 2

αy = [−0.69, 0.69], τx = [0, 0],
αy = [−0.70, 0.70], τx = [0.25, −0.25],
αy = [−0.77, 0.77], τx = [0.85, −0.85],

αy = [−0.91, 0.91], τx = [1.4, −1.4],
αy = [−1.11, 1.11], τx = [2, −2]

3x5 gy(X) = αy + τ1ω1 + τ2ω2,
y = 1, 2, 3, 4

αy = [−1.39, −0.41, 0.41, 1.39], τx = [0, 0],
αy = [−1.40, −0.41, 0.41, 1.40], τx = [0.25, −0.25],
αy = [−1.53, −0.45, 0.45, 1.53], τx = [0.85, −0.85],

αy = [−1.76, −0.53, 0.53, 1.76], τx = [1.4, −1.4],
αy = [−2.10, −0.66, 0.66, 2.10], τx = [2, −2]

5x3 gy(X) = αy + τ1ω1 + τ2ω2 + τ3ω3 + τ4ω4,
y = 1, 2

αy = [−0.69, 0.69], τx = [0, 0, 0, 0],
αy = [−0.72, 0.72], τx = [0.55, 0.25, −0.25, −0.55],

αy = [−0.82, 0.82], τx = [1.1, 0.85, −0.85, −1.1],
αy = [−1.02, 1.02], τx = [1.7, 1.4, −1.4, −1.7],

αy = [−1.31, 1.31], τx = [2.3, 2, −2, −2.3]

5x5 gy(X) = αy + τ1ω1 + τ2ω2 + τ3ω3 + τ4ω4,
y = 1, 2, 3, 4

αy = [−1.39, −0.41, 0.41, 1.39],
τx = [0, 0, 0, 0],

αy = [−1.43, −0.42, 0.42, 1.43],
τx = [0.55, 0.25, −0.25, −0.55],
αy = [−1.61, −0.48, 0.48, 1.61],

τx = [1.1, 0.85, −0.85, −1.1],
αy = [−1.93, −0.61, 0.61, 1.93],

τx = [1.7, 1.4, −1.4, −1.7],
αy = [−2.37, −0.79, 0.79, 2.37],

τx = [2.3, 2, −2, −2.3]

5.6.1 Simulation Results for No Association and Linear Associations

Model Free Model (Good) Model (Poor)
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Figure 5.1: No Association. Boxplots of ρ̂2
X→Y for 3×5 table. Data were simulated

from cumulative logit model with ordinal explanatory variable X.

Figure 5.1 shows the boxplots of the model-free and two model-based measures from

simulated 3x5 tables with no association for three sample sizes (n=500, 1000, 2000).
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Because this simulation was set up so that the data had no association, we see that

all three measures performed similarly in obtaining values near 0. For the model-free

measure, we see that it is skewed right but the skewness decreased as the sample

size increased. Even with right skew, the values of ρ̂2
X→Y did not vary too much

with range less than 0.05. Moreover, the center slightly decreased as the sample size

increased. For the well-fitted model, we see it had no variation in the distribution of

the model-based measure while for the poorly-fitted model, the sampling distributions

of ρ̂2
X→Y skewed slightly right like the model-free one but this skewness decreased as

the sample size increased.
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Figure 5.2: Weak Association. Boxplots of ρ̂2
X→Y for 3 × 5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Model Free Model (Good) Model (Poor)
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Figure 5.3: Moderate Association. Boxplots of ρ̂2
X→Y for 3 × 5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure 5.4: Strong Association. Boxplots of ρ̂2
X→Y for 3 × 5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Model Free Model (Good) Model (Poor)
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Figure 5.5: Very Strong Association. Boxplots of ρ̂2
X→Y for 3 × 5 table. Data

were simulated from cumulative logit model with ordinal explanatory variable X.

Figures 5.2-5.5 display the boxplots of the model-free and two model-based mea-

sures from simulated 3x5 tables under 4 association levels (weak, moderate, strong,

very strong) for three sample sizes (n=500, 1000, 2000). The model-free ρ̂2
X→Y val-

ues were skewed right and were similar in sampling distribution to the well-fitted

model. Moreover, in both the model free and model (good) boxplots, as the sample

size increased, the sampling variability decreased (as well as the skewness) while the

center slightly decreased as the sample size increased. This disparity becomes less

obvious when association is moderate or stronger. As the strength of the association

increases, so does the model-free and model (good) measure. In Appendix B, it can

be observed that ρ̂2
X→Y also increases as the table size gets bigger, especially as the

number of categories in X increases. On the other hand, the poorly-fitted model did

not have similar results as the other two. While the other measures compared sim-

ilarly in distribution across sample sizes, the poorly-fitted model based measure did

not deviate from 0, suggesting it was unable to detect nor quantify the dependence

between X and Y .
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5.6.2 Simulation Results for Nonmonotone Association
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Figure 5.6: Nonmonotone Association. Boxplots of ρ̂2
X→Y for 3 × 3 tables. Data

were simulated from cumulative logit model with ordinal explanatory variable X.
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Figure 5.7: Nonmonotone Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data

were simulated from cumulative logit model with ordinal explanatory variable X.
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Model (Linear) Model (No)
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Figure 5.8: Nonmonotone Association. Boxplots of ρ̂2
X→Y for 5 × 3 tables. Data

were simulated from cumulative logit model with ordinal explanatory variable X.
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Figure 5.9: Nonmonotone Association. Boxplots of ρ̂2
X→Y for 5 × 5 tables. Data

were simulated from cumulative logit model with ordinal explanatory variable X.

Figures 5.6-5.9 show the boxplots of the model-free and three model-based measures

(1 well-fitted model, 2 poorly-fitted models) from simulated tables of all table sizes

considered (3x3, 3x5, 5x3, 5x5) with a nonmonotone association for three sample

sizes (n=500, 1000, 2000). Similar to the previous observations made in Section 5.6.1
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for the no association and linear association boxplots, the sampling variation of the

model-free measure and the model-based measure from a model of good fit decreased

as the sample size increased, while the centers of the two measures remained stable

when the associations are nonmonotone nonlinear. It is also worth noticing that,

when the table size (cell size) increases, the variation also decreases. On the contrary,

for both poorly-fitted models, they were unable to identify the nonmonotone linear

association. There were slight variations in both the intercept only and linear model

but all estimated values did not deviate much from a value of 0.

5.6.3 Simulation Results for Nominal Explanatory Variable X

Model Free Model (Good) Model (Poor)
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Figure 5.10: No Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Model Free Model (Good) Model (Poor)
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Figure 5.11: Weak Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure 5.12: Moderate Association. Boxplots of ρ̂2
X→Y for 3×5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Model Free Model (Good) Model (Poor)
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Figure 5.13: Strong Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure 5.14: Very Strong Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data

were simulated from cumulative logit model with nominal explanatory variable X.

Figures 5.10-5.14 show the boxplots of the model-free and two model-based measures

from simulated 3x5 tables with a nominal X with 5 levels of association (none, weak,

moderate, strong, and very strong) for three sample sizes (n=500, 1000, 2000). Similar

to the previous observations made in Section 5.6.1 and Section 5.6.2, the sampling
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variability of the model-free measure and the model-based measure from a model of

good fit decreased as the sample size increased. These two measures were also right

skewed but the skewness decreased as the sample size increased. Moreover, centers

decreased as the sample size increased when the association is zero or weak, but this

disparity becomes less obvious when association is moderate or stronger. As the

strength of association increased, the value of both measures increased as well. In

Appendix B, it can be observed that ρ̂2
X→Y also increases as the table size gets bigger,

especially as the number of categories in X increases. For the poorly-fitted model,

the measure is centered around 0 without much deviation regardless of strength of

association or table size (see Appendix B).

5.6.4 Discussion

In this simulation study, we observed similarities in the sampling distributions of the

model-free CCRAM proposed by Wei & Kim (2021) and our proposed model-based

CCRAM when the model is a good fit. The similarities between the proposed model-

free measure and the model-based measure from a well-fitted model, both of which

were very different than the poor one, reveal two important values of the model-free

CCRAM. It not only successfully captures the structure of the dependence without

model specification, but also has a potential of serving as a goodness of fit measure

for model comparison and selection.

For the former, since it’s not always easy or possible to identify a good parametric

model for such data in real world applications, the model-free CCRAM provides us a

good and practical estimate for this type of regression dependence which often exists

in high-dimensional contingency tables, For the latter, for those interested in para-

metric modeling, the model-free CCRAM can also help identify or evaluate a chosen

parametric model; if one would like to consider a parametric model for multivariate
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categorical data with regression dependence based on an ordinal response, they can

calculate both the model-based CCRAM (based on the model of their choice) and

the model-free CCRAM, and compare the two to see if they are roughly the same

and not close to zero. If both were close to zero, it tells us that the chosen categori-

cal explanatory variables might have very little contribution to the ordinal response

variable. The basic idea behind this potential approach is that if the two non-zero

measures were roughly the same, it suggests that the chosen model possibly fits the

data well. On the other hand, disparities between the two measures may reflect

the deviation of the chosen model from the data collected, urging the researcher to

consider a different parametric model instead.

5.7 Real Data Analysis

One of the major political issues that Americans face is the polarization of politics.

In a report titled, “Political polarization in the American public,” the Pew Research

Center writes, “Republicans and Democrats are more divided along ideological lines

. . . than at any point in the last two decades.” Does one’s political ideology align with

party affiliations? Using data from the 2016 General Social Survey relating political

ideology and political affiliation in the United States based on sex, we examine the

exploratory utility of the model-free CCRAM in answering this question.2

To this end, we emulate Agresti (2019)’s construction of a multiway (2 × 2 × 5)

contingency table in Table 5.4 with three variables: sex (S), political party (P ), and

political ideology (I). Subjects (n = 661) were chosen if they identified themselves

as 1 for “strong Democrats” or 2 for “strong Republicans.” Political ideology has a

five-point ordinal scale, (1 = Very Liberal, 2 = Slightly Liberal, 3 = Moderate, 4 =
2The General Social Survey is a nationally representative survey of adults in the United States

and collects data regarding people’s opinions, attitudes, and behaviors. This survey is quite useful
for policy-makers and researchers that are interested in the sociological contour of America.
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Table 5.4: Political Ideology by Sex and Political Party Affiliation (n = 661)

Political Ideology (I)

Sex (S) Political Party (P ) Very
Liberal

Slightly
Liberal Moderate Slightly

Conservative
Very

Conservative

Female Democrat 25 105 86 28 4
Republican 0 5 15 83 32

Male Democrat 20 73 43 20 3
Republican 0 1 14 72 32

Table 5.5: Estimated model-free CCRAMs and their BCa confidence intervals
using Table 5.4 for three relationships. P, S → I denotes the relationship where sex
and political party are explanatory variables and ideology is the response variable.
S → I and P → I similarly denote relationships with only one explanatory variable,
either sex or political party.

Total (n = 661) ρ̂2
P,S→I ρ̂2

S→I ρ̂2
P→I

Estimate 0.460 0.002 0.459
95% BCa bootstrap CI ( 0.404, 0.511 ) ( 0.000, 0.014 ) ( 0.400, 0.501 )

Slightly Conservative, 5 = Very Conservative) and sex was categorized by 1 = female,

2 = male.

Because the model-free CCRAM identifies regression dependence, we are inter-

ested in comparing the value of CCRAM measure when political ideology is the

response variable with different explanatory variables. When we consider both sex

and political party as explanatory variables, we denote this relationship by S, P → I

Furthermore, we examine the measure with a single explanatory variable, either sex

or political party, denoted S → I and P → I respectively. To examine these de-

pendence structures, the calculated proposed measure for these three relationships

and their 95% bootstrap bias-corrected and accelerated (BCa) confidence intervals

are displayed in Table 5.5.

After computing the measures, we observe that ρ̂2
P,S→I = 0.460 and the corre-

sponding 95% confidence interval is (0.404, 0.511). This suggests a moderately strong

association between sex and party as explanatory variables on political ideology. This
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estimated association measure also tells us that the lower bound on the average pro-

portion of variance for the checkerboard copula score of political ideology (I) ex-

plained by the checkerboard copula regression using sex (S) and political party (P )

as explanatory variables is 46%. Then, the estimated upper bound of the model-free

CCRAM is 0.934 (= 12σ̂2
Ŝ3

) and so the rescaled CCRAM is 0.460/0.934 = 0.492.

Now, let’s turn our attention to each individual predictor. When sex is the only

explanatory variable, we obtained ρ̂2
S→I = 0.002 (ρ̂2∗

S→I = 0.003) indicating a weak

association between sex and political ideology. When party is the only explanatory

variable, we obtained ρ̂2
P→I = 0.459 (ρ̂2∗

P→I = 0.491) suggesting a strong association

between political party and political ideology. However, it is also important to identify

potential interactions among the two explanatory variables for explanatory modeling,

so bootstrap predictions were performed and the results are displayed in Figure 5.15.
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Figure 5.15: Predicted category of ideology by the checkerboard copula regression
for each combination of party and sex. The first letter denotes the party (D =
Democrat and R = Republican) and the second the sex (F = Female, M = Male).
The size of the circle indicates proportion of each category of political ideology
estimated by the regression in 1000 bootstraps. The dark dot at each combination
represents the predicted level of political ideology for that combination.
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Without fitting any model, Figure 5.15 reveals that there might be a potential

interaction between sex and political party. Notice for Democrats (D), females tend

to be moderate while males tend to be slightly liberal. While for Republicans (R),

regardless of sex, the predicted levels of political ideology from all bootstrap samples

are all slightly conservative. Using plots like the one above makes it easy to explore

potential interactions in 3-way or higher-dimensional contingency tables.

After looking at these model-free measure and bootstrap predictions, we fit a

cumulative logit model under the proportional odds assumption with an interaction

term between sex and political party. We display the model output below.

Call:
VGAM::vglm(formula = cbind(y1, y2, y3, y4, y5) ~ sex * party,

family = cumulative(parallel = TRUE), data = table_ideology)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept):1 -2.177 0.176 -12.36 <2e-16 ***
(Intercept):2 0.118 0.123 0.96 0.34
(Intercept):3 1.808 0.156 11.59 <2e-16 ***
(Intercept):4 4.604 0.239 19.28 <2e-16 ***
sex2 0.182 0.188 0.97 0.33
party2 -3.480 0.254 -13.71 <2e-16 ***
sex2:party2 -0.361 0.311 -1.16 0.25
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Names of linear predictors: logitlink(P[Y<=1]),
logitlink(P[Y<=2]), logitlink(P[Y<=3]), logitlink(P[Y<=4])

Residual deviance: 8.45 on 9 degrees of freedom

Log-likelihood: -34.5 on 9 degrees of freedom

Number of Fisher scoring iterations: 4

No Hauck-Donner effect found in any of the estimates
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Exponentiated coefficients:
sex2 party2 sex2:party2

1.1994 0.0308 0.6969

First, let’s check if the proportional odds assumption holds as well as the overall fit of

this model. To do the former, we consider the Brant test from Brant (1990) to check

proportional odds using the brant package in R from Schlegel & Steenbergen (2020).

The results of this test suggest the proportional odds assumptions hold so now we

check the overall fit. From the summary output, the deviance for the cumulative logit

model is 9.81 based on df = 9 and calculations tell us that the p-value is 0.489 so the

model fits well.

Looking at the summary output, we see that the estimated odds that Republican

responds in the liberal direction rather than the conservative direction is equal to

exp(β̂) = exp(−3.48) = 0.03 times the estimated odds for Democrats. Likewise, the

estimated odds that Republican responds in the conservative direction rather than

the liberal direction is equal to exp(β̂) = exp(3.48) = 32.46 times the estimated odds

for Democrats. Furthermore, there does not seem to be evidence of a sex effect or

interaction effect. Recall that Figure 5.15 suggests a potential interaction between

sex and political party, but this is not shown to be significant from this fitted model.

While it’s very likely that the interaction effect is indeed not strong enough to be

significant (after all, Figure 5.15 is only for EDA purposes), it’s worth noting that

the above interpretations and findings are only valid if the model assumptions hold

and if the sample size is large enough to ensure the corresponding asymptotic theory

holds. While we can verify the former by checking the proportional odds assumption

which the Brant test tells us is okay, the latter is often harder to confirm. Both of

them remind us of the common challenges and limitations to parametric modeling.

Now, let’s calculate the model-based rescaled CCRAMs based on the following
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proportional odds cumulative logit models for political ideology: (1) Sex only, (2)

Party only, (3) Sex and Party without interaction, and (4) Sex and Party with in-

teraction. From a model that had sex as the only predictor of political ideology, our

model-based rescaled CCRAM is 0.003. Our model with only political party resulted

in a model-based rescaled CCRAM of 0.488. For a model with sex and party and no

interactions, the model-based rescaled CCRAM was 0.488. Finally, the model-based

rescaled CCRAM for the model with the interaction term was 0.489.

These model-based CCRAMs are similar to the values obtained by the model-free

CCRAM as shown in Table 5.5. One way we can think about these results in familiar

terms is through the lens of R2, the coefficient of determination, values for linear

models. Recall that in parametric modeling, R2 gives us a notion of how well the

model fits or how much variation in the response variable the model explains for. In

a similar light, that is what the CCRAM, model-based or model-free, represents, but

for multi-way contingency tables. When we considered only sex in the model, we

obtained very low model-based and model-free CCRAMs, suggesting that sex only

explains almost no variation in ideology so the model is not a good fit. For the other

three models, we see that all these CCRAM values, model-based and model-free are

similar to each other which tells use 2 things. It tells us that these parametric models

might be good choices and that among these three models, adding an additional term

does not add much to the explained variation in the ordinal response variable. For

instance, adding the interaction term to the model would only increase the explained

variation by 1% (i.e. the difference in the rescaled model-based CCRAM between the

models with and without the interaction is 0.489-0.488 = 0.01). If we were thinking

in the sense of R2, then what should we do? Well, if they are similar, we often go for

the more parsimonious and simpler model, so we recommend the party only model

for predicting ideology in this case.
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Overall, our explanatory modeling using the model-free CCRAM aligns well with

the results from the parametric modeling; it not only extracts similar information

about the regression dependence without parametric modeling, but also has great

potential in helping identify good parametric models — all of which echoes our find-

ings from the simulation studies.
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Chapter 6 Conclusion

A conclusion is simply the place

where you got tired of thinking.

Dan Chaon, Stay Awake

In summary, this thesis explored a novel model-free regression dependence mea-

sure for ordinal response variables and categorical explanatory variables as well as its

potential to be a goodness of fit measure. In order to arrive at the methodology, we

first familiarized ourselves with copulas in the continuous case and several key results

that make copulas useful in characterizing the dependence between random variables.

The key results included Sklar’s theorem, the Invariance Principle, and the Fréchet

Hoeffding Bounds. After arming the reader with the tools they needed, we discussed

some of the limitations when transitioning into the discrete case. Here we saw an

array of problems that could occur, making copulas less than ideal for characteriz-

ing dependence. Issues ranged from the nonuniqueness of the copula to the lack of

interpretation. However, we saw that there does exist one copula, the checkerboard

copula, that bridges the gap between the discrete case and the continuous case.

We then turned our attention to how the checkerboard copula is used in the cre-

ation of a regression based association measure comprised of three parts: the score,

the regression function, and the measure. The checkerboard copula score can be seen

as the set of the average of the marginal distributions calculated at every two consec-
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utive categories of some variable. This score was used in defining the checkerboard

copula regression function which can be interpreted as the mean checkerboard score of

some response variable with respect to the conditional distribution of the explanatory

variable(s). Based on the regression function, we examined the model-free checker-

board copula regression association measure which represents the magnitude of the

explanatory power of the explanatory variable(s) in the checkerboard copula regres-

sion. In addition to this model-free measure, we proposed a model-based version of

this measure where the joint probabilities are estimated using a model as opposed to

directly from the data.

With both measures in hand, we simulated contingency tables to evaluate the

performance of the model-free and the model-based measure. Specifically, we exam-

ined the model-free and model-based measures under various types and strengths of

association as well as the sample size and the size of the table itself. We observed

similar sampling distribution patterns when comparing the model-free measure to the

model-based measure from a model that is well fitted to the data. On the other hand,

a model that was poorly fitted to the data differed drastically in the sampling distri-

bution of the measure. In addition, we applied our measure onto a real world data set

concerning the political ideology of people cross-classified by sex and political party

where we saw that our model-free exploratory modeling hinted at results corroborated

by parametric modeling. While it is important to note that the proposed measure

does not indicate the statistical significance of parametric ordinal models with the

same explanatory variables, the simulations and real world applications demonstrate

the utility of this measure as an exploratory approach in not only quantifying the

association between multiple categorical variables, but also helping identify complex

regression dependence structures between an ordinal response variable and multiple

categorical (ordinal or nominal) explanatory variables.
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Our exploratory results suggest several advantages of the model-free CCRAM.

First, it is a model-free approach meaning it does not get bogged down by some of

the steps we take in parametric modeling; that is, specifying a dependence struc-

ture in advance, ensuring conditions are met and running model diagnostics. In

addition, one should keep in mind that sparseness is always an issue, especially for

high-dimensional categorical data, and one might not be able to even fit a parametric

model on a multi-way contingency table. Moreover, the model-free measure acts as a

compliment to existing approaches. It provides a new way to fully explore categorical

data for EDA purposes by quantifying the association between multiple categorical

variables, visualizing multi-way contingency tables and potential interactions. Lastly,

our simulation results hint at the possibility of using the model-free measure as a

goodness of fit measure. We can think of it as a R2-like measure for categorical data

and explore what the model free CCRAM can potentially do for a regression model

based on an ordinal response, just like what R2 can do in a multiple linear regression

model — based on a quantitative response.

Given the time constraints of a thesis, we were able to only explore certain asso-

ciation scenarios. It would be beneficial to consider other associations like monotone

nonlinear ones as well as consider simulations with more than one explanatory variable

(which will involve simulating multi-way contingency tables with an ordinal response

variable) to see if our initial results are similar. Furthermore, an exciting future work

in this area is using the model-free CCRAM as a goodness of fit point estimator and

derive the asymptotic theory for testing the fit of a parametric model.
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Appendix A Hidden Code Chunks

This first appendix includes all of the R chunks of code that were hidden throughout

the document.

A.1 Code for Chapter 2

Loading in packages used throughout the chapter

Code used in Section 2.2 for our motivating example. We first generate the two

data sets.

set.seed(713) # reproducibility
d <- 2 # dimensions
n <- 1000 # sample size
sigma <- matrix(c(1, 0.65, 0.65, 1), nrow = 2) # correlation matrix

norm_norm <- MASS::mvrnorm(n, mu = rep(0, 2), Sigma = sigma) |>
as_tibble()

u <- norm_norm |>
mutate(

X1 = pnorm(V1),
X2 = pnorm(V2)

)
beta_exp <- u |>

mutate(
Y1 = qbeta(X1, shape1 = 10, shape2 = 5),
Y2 = qexp(X2, rate = 1)

)

Code for Figure 2.1.
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p1 <- ggplot(u, aes(x = V1, y = V2)) +
geom_point() +
ylab(expression(~ X[2])) +
xlab(expression(~ X[1]))

p1 <- ggMarginal(p1)
p2 <- ggplot(beta_exp, aes(x = Y1, y = Y2)) +

geom_point() +
ylab(expression(~ Y[2])) +
xlab(expression(~ Y[1]))

p2 <- ggMarginal(p2)
grid.arrange(p1, p2, nrow = 1)

Code for Figure 2.2.

u_norm_norm <- norm_norm |>
mutate(

V1 = pnorm(V1),
V2 = pnorm(V2)

)
u_beta_exp <- beta_exp |>

mutate(
V1 = pbeta(Y1, shape1 = 10, shape2 = 5),
V2 = pexp(Y2, rate = 1)

)

p1_u <- ggplot(u_norm_norm, aes(x = V1, y = V2)) +
geom_point() +
ylab(expression(`F`[2](X[2]))) +
xlab(expression(`F`[1](X[1])))

p1_u <- ggMarginal(p1_u)
p2_u <- ggplot(u_beta_exp, aes(x = V1, y = V2)) +

geom_point() +
ylab(expression(`G`[2](Y[2]))) +
xlab(expression(`G`[1](Y[1])))

p2_u <- ggMarginal(p2_u)
grid.arrange(p1_u, p2_u, nrow = 1)

Code for Figure 2.3.
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norm_norm_2 <- u_beta_exp |>
mutate(

V1 = qnorm(V1),
V2 = qnorm(V2)

)
p1_2 <- ggplot(norm_norm_2, aes(x = V1, y = V2)) +

geom_point() +
ylab(expression(`F`[2]ˆ-1 ~ (G[2](Y[2])))) +
xlab(expression(`F`[1]ˆ-1 ~ (G[1](Y[1]))))

p1_2 <- ggMarginal(p1_2)

# grid.arrange(p1, p1_2, nrow= 1)
grid.arrange(p1, p1_2, nrow = 1)

Code for Figure 2.4.

# par(mfrow=c(r=1,c=2))
library(copula)
d <- 2 # 2 dimensions
# create an independent copula object
ic <- copula::indepCopula(dim = 2)
plot1 <- wireframe2(ic, FUN = pCopula, xlab = "u", ylab = "v")
plot2 <- contourplot2(ic, FUN = pCopula, xlab = "u", ylab = "v")
gridExtra::grid.arrange(plot1, plot2,

nrow = 1
)

Code for Figure 2.5.

d <- 2 # dimension
theta <- -9 # copula parameter
fc <- frankCopula(theta, dim = d) # define a Frank copula

set.seed(713)
n <- 5 # number of evaluation points
u <- matrix(runif(n * d), nrow = n) # n random points in [0,1]ˆd
frankPlot <- wireframe2(fc,

FUN = pCopula, # wireframe plot (copula)
draw.4.pCoplines = FALSE,
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xlab = "u",
ylab = "v",
par.settings = list(

axis.text = list(cex = .5),
layout.heights = list(bottom.padding = -8),
layout.widths =

list(right.padding = -20)
)

)
frankDensityPlot <- wireframe2(fc,

FUN = dCopula, delta = 0.001,
lwd = 1 / 2,
xlab = "u",
ylab = "v",
par.settings = list(

axis.text = list(cex = .5),
layout.heights = list(bottom.padding = -8)

)
) # wireframe plot (density)
frankPlotContour <- contourplot2(fc,

FUN = pCopula,
xlab = "u",
ylab = "v",
par.settings = list(

axis.text = list(cex = .5),
layout.widths =

list(right.padding = -20)
)

) # contour plot (copula)
frankDensityContour <- contourplot2(fc,

FUN = dCopula,
n.grid = 72, # contour plot (density)
lwd = 1 / 2,
xlab = "u",
ylab = "v",
par.settings = list(axis.text = list(cex = .5))

)
gridExtra::grid.arrange(frankPlot, frankDensityPlot,

frankPlotContour, frankDensityContour,
nrow = 2
# heights=c(6,5)
# widths=c(5,2)
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)

Code for Figure 2.6.

par(mfrow = c(1, 3))
set.seed(713)
n <- 1000
U <- rCopula(n, copula = fc)
U0 <- rCopula(n, copula = setTheta(fc, value = 0))
U9 <- rCopula(n, copula = setTheta(fc, value = 9))
UPlot <- plot(U, xlab = "U", ylab = "V")
U0Plot <- plot(U0, xlab = "U", ylab = "V")
U9Plot <- plot(U9, xlab = "U", ylab = "V")
# gridExtra::grid.arrange(UPlot,U0Plot,
# U9Plot, nrow = 1)

Code for Figure 2.7.

nc <- normalCopula(iTau(normalCopula(), tau = 0.5))
set.seed(713)
U <- rCopula(1000, copula = nc) # sample from the normal copula
U1 <- wireframe2(nc,

FUN = dCopula,
delta = 0.025,
xlab = "u", ylab = "v",
par.settings = list(

axis.text = list(cex = .5),
layout.heights = list(bottom.padding = -4)

)
)
U2 <- contourplot2(nc,

FUN = pCopula,
xlab = "u", ylab = "v",
par.settings = list(

axis.text = list(cex = .5),
layout.heights = list(bottom.padding = -2)

)
) # copula
U3 <- contourplot2(nc,

FUN = dCopula, n.grid = 42,
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cuts = 33, lwd = 1 / 2,
xlab = "u", ylab = "v",
par.settings = list(

axis.text = list(cex = .5),
layout.heights = list(top.padding = -4)

)
) # density
U4 <- ggplot(data.frame(U), aes(x = X1, y = X2)) +

geom_point() +
labs(x = "U", y = "V") # scatter plot

gridExtra::grid.arrange(U1, U2,
U3, U4,
nrow = 2

)

Code for Figure 2.8.

set.seed(713) # reproducibility
par(mfrow = c(r = 1, c = 2)) # 2x2 grid
M <- runif(100) # sample 100 from a standard uniform
plot(cbind(M, 1 - M), xlab = "U", ylab = "V") # W
plot(cbind(M, M), xlab = "U", ylab = "V") # M

Code for Figure 2.9.

# par(mfrow=c(r=2,c= 2)) # 2x2 grid
u <- seq(0, 1, length.out = 40) # subdivision points in each dimension
u12 <- expand.grid("u" = u, "v" = u) # build a grid
W <- pmax(u12[, 1] + u12[, 2] - 1, 0) # values of W on grid
M <- pmin(u12[, 1], u12[, 2]) # values of M on grid
val.W <- cbind(u12, "W(u,v)" = W) # append grid
val.M <- cbind(u12, "M(u,v)" = M) # append grid
W_wire <- wireframe2(val.W,

par.settings = list(
axis.text = list(cex = .5),
layout.heights = list(bottom.padding = -8),
layout.widths =

list(right.padding = -20)
)

)
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M_wire <- wireframe2(val.M,
par.settings = list(

axis.text = list(cex = .5),
layout.heights = list(bottom.padding = -8)

)
)
W_contour <- contourplot2(val.W,

xlim = 0:1,
ylim = 0:1,
par.settings = list(

axis.text = list(cex = .5),
layout.heights = list(bottom.padding = 0),
layout.widths =

list(right.padding = -20)
)

)
M_contour <- contourplot2(val.M,

xlim = 0:1, ylim = 0:1,
par.settings = list(axis.text = list(cex = .5))

)
grid.arrange(W_wire, M_wire,

W_contour, M_contour,
nrow = 2

)

Code for Section 2.6.1.

set.seed(713) # reproducibility
d <- 2 # dimension
rho <- 0.4 # off-diag entry of the correlation matrix
u <- runif(d) # generate a random point
x <- qnorm(u) # applying the quantile transform
# bivariate normal distribution
mvtnorm::pmvnorm(

upper = x, corr = matrix(c(1, rho, rho, 1), nrow = 2),
keepAttr = FALSE

)
# normal copula
nc <- normalCopula(rho)
copula::pCopula(u, copula = nc)

99



Code for Section 2.6.2.

H1 <- copula::mvdc(fgmCopula(1),
margins = c("beta", "exp"),
paramMargins = list(list(shape1 = 7, shape2 = 3), list(rate = 1))

)

H2 <- copula::mvdc(fgmCopula(1),
margins = c("norm", "norm"),
paramMargins = list(list(mean = 3, sd = 2), list(mean = 0, sd = 1))

)

Code for Figure 2.10.

X1 <- rMvdc(1000, mvdc = H1)
X2 <- rMvdc(1000, mvdc = H2)
H1_p <- ggplot(data.frame(X1), aes(x = X1, y = X2)) +

geom_point() +
ylab(expression(~ Y[1])) +
xlab(expression(~ X[1]))

H2_p <- ggplot(data.frame(X2), aes(x = X1, y = X2)) +
geom_point() +
ylab(expression(~ Y[2])) +
xlab(expression(~ X[2]))

H1_p <- ggMarginal(H1_p)
H2_p <- ggMarginal(H2_p)
gridExtra::grid.arrange(H1_p,

H2_p,
nrow = 1

)

Code for Figure 2.11.

set.seed(713)
### Sampling from a normal copula
n <- 1000 # sample size
d <- 2 # dimension
rho <- 0.8 # off-diagonal entry in the correlation matrix P
P <- matrix(rho, nrow = d, ncol = d) # build the correlation matrix P
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diag(P) <- 1
set.seed(713)
# n ind. bivariate normal observations
X <- MASS::mvrnorm(n, mu = rep(0, d), Sigma = P)
U <- pnorm(X) # n ind. realizations from the corresponding copula
# transform U (normal copula) to beta and exp margins
Y <- cbind(qbeta(U[, 1], shape1 = 10, shape2 = 3), qexp(U[, 2],

rate = 2))

X <- X |>
as_tibble()

X_p <- ggplot(X, aes(x = V1, y = V2)) +
geom_point() +
geom_point(data = X[3, ], aes(x = V1, y = V2),

colour = "red", size = 5) +
geom_point(data = X[78, ], aes(x = V1, y = V2),

colour = "blue", size = 5) +
geom_point(data = X[593, ], aes(x = V1, y = V2),

colour = "green", size = 5) +
labs(x = "X", y = "Y")

X_p <- ggMarginal(X_p)

U <- U |>
as_tibble()

U_p <- ggplot(U, aes(x = V1, y = V2)) +
geom_point() +
geom_point(data = U[3, ], aes(x = V1, y = V2),

colour = "red", size = 5) +
geom_point(data = U[78, ], aes(x = V1, y = V2),

colour = "blue", size = 5) +
geom_point(data = U[593, ], aes(x = V1, y = V2),

colour = "green", size = 5) +
labs(x = "U", y = "V")

U_p <- ggMarginal(U_p)

Y <- Y |>
as_tibble()
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Y_p <- ggplot(Y, aes(x = V1, y = V2)) +
geom_point() +
geom_point(data = Y[3, ], aes(x = V1, y = V2),

colour = "red", size = 5) +
geom_point(data = Y[78, ], aes(x = V1, y = V2),

colour = "blue", size = 5) +
geom_point(data = Y[593, ], aes(x = V1, y = V2),

colour = "green", size = 5) +
labs(x = "X'", y = "Y'")

Y_p <- ggMarginal(Y_p)

grid.arrange(X_p, U_p, Y_p, nrow = 1)

A.2 Code for Chapter 3

Code for Figure 3.1.

set.seed(713)
par(mfrow = c(1, 2)) # Create a 2 x 2 plotting matrix
X <- rpois(1000, lambda = 1) # sampling from poisson
V <- runif(1000) # sampling from unif
U <- ppois(X, lambda = 1) + (V * dpois(X, lambda = 1)) # transform
plot(ecdf(ppois(X, 1)), xlab = "P(X <= x)", main = "ECDF of F(X)")
plot(ecdf(U), xlab = "P(U <= u)", ylab = "Fn(u)", main = "ECDF of U")

A.3 Code for Chapter 4:

In this chapter, the code below are functions we used to obtain various values in order

to get the measure.

# get joint pmf from df where the
# rows are cases (i.e. one row is one observation)
getJointPMF <- function(data = df) {

return(prop.table(table(data)))
}

102



# gets frequency table
getJointPMF_freq <- function(data = df) {

return(data |>
group_by_all() |>
dplyr::count() |>
ungroup() |>
mutate(freq = n / sum(n)))

}

# each joint pmf is a row
getJointPMF_2 <- function(data = df) {

grid <- expand.grid(lapply(data, levels))
colnames(grid) <- colnames(data)
pmf <- getJointPMF_freq(data = data)
combined <- suppressMessages(left_join(grid, dplyr::select(pmf, -n),

by = colnames(grid)
))
combined[is.na(combined)] <- 0
result <- combined |>

mutate(across(.cols = everything(), as.numeric))
return(result)

}

# function to get the specific joint pmf of u,v pair
findJointPMF <- function(u = 0.3, v = 0.3, data = df) {

joint_pmf <- getJointPMF(data = data)
X <- findInterval(u, Xcdf, left.open = TRUE, rightmost.closed = TRUE)
Y <- findInterval(v, Ycdf, left.open = TRUE, rightmost.closed = TRUE)
return(joint_pmf[X, Y])

}

# marginal pmf of the var_index
getPMF <- function(var_index = 1, data = df) {

if ("data.frame" %in% class(data)) {
data <- getJointPMF(data = data)

}
if (var_index == 1) {

return(rowSums(data))
} else {

return(colSums(data))
}

}
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# generalized method to get PMF
getPMF_2 <- function(var_index = 1, data = df) {

if ("data.frame" %in% class(data)) {
return(data |>

dplyr::count(data[, var_index]) |>
dplyr::mutate(freq = n / sum(n)) |>
dplyr::select(freq) |>
unlist())

} else {
if (var_index == 1) {

return(rowSums(data))
} else {

return(colSums(data))
}

}
}

# marginal pmf without var_index
getPMFwo <- function(var_index = 1, data = df) {

without <- data[, -var_index] |>
data.frame()

colnames(without) <- colnames(data)[-var_index]
return(without |>

group_by_all() |>
dplyr::count() |>
ungroup() |>
mutate(freq = n / sum(n)))

}

# getting conditional pmf tables
getConditionalPMF <- function(var_index = 2, data = df) {

if ("data.frame" %in% class(data)) {
data <- getJointPMF(data = data)
# regardless of var_index, we make the number of rows to be
# length of X and columns to be length of Y,
# similar to the table in the paper

}
conditionalTable <- matrix(

nrow = length(data[, 1]),
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ncol = length(data[1, ])
)
if (var_index == 2) {

for (i in 1:length(data[, 1])) {
row_sum <- sum(data[i, ])
for (j in 1:length(data[1, ])) {

conditionalTable[i, j] <- data[i, j] / row_sum
}

}
} else {

for (j in 1:length(data[1, ])) {
col_sum <- sum(data[, j])
for (i in 1:length(data[, 1])) {

conditionalTable[i, j] <- data[i, j] / col_sum
}

}
}

conditionalTable <- as.data.frame(conditionalTable)
# colnames(conditionalTable) <- levels(data)
return(conditionalTable)

}

# getting conditional pmf of var_index
getConditionalPMFwo <- function(var_index = 1, data = df) {

grouping_cols <- c(1:ncol(data))[-var_index]
cond <- data |>

group_by_all() |>
dplyr::count() |>
ungroup() |>
mutate(freq = n / sum(n)) |>
group_by(across(grouping_cols)) |>
mutate(freq_cond = n / sum(n)) |>
ungroup()

return(cond)
}

# get the marginal cdf
getCDF <- function(var_index = 1, data = df) {

append(cumsum(getPMF_2(var_index = var_index, data = data)),
value = 0, after = 0

)
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}

# function to get the joint cdf of u,v pair
getJointCDF <- function(u = 0.3, v = 0.3, data = df) {

joint_pmf <- getJointPMF(data = data)
Xcdf <- getCDF(var_index = 1, data = data)
Ycdf <- getCDF(var_index = 2, data = data)

X <- findInterval(u, Xcdf, left.open = TRUE, rightmost.closed = TRUE)
Y <- findInterval(v, Ycdf, left.open = TRUE, rightmost.closed = TRUE)

sum <- 0
for (i in 1:X) {

for (j in 1:Y) {
sum <- sum + joint_pmf[i, j]

}
}
return(sum)

}

# generalized function to get the joint cdf of u,v pair
getJointCDF_2 <- function(idx_vec = c(1, 2, 3), data = df) {

grid <- expand.grid(lapply(data, levels))
colnames(grid) <- colnames(data)
pmf <- getJointPMF_freq(data = data)
combined <- suppressMessages(left_join(grid, dplyr::select(pmf, -n),

by = colnames(grid)
))
combined[is.na(combined)] <- 0
result <- combined |>

mutate(across(.cols = everything(), as.numeric))

for (i in 1:length(idx_vec)) {
result <- result[result[, i] <= idx_vec[i], ]

}
return(sum(result$freq))

}

# get density of the checkerboard copula
getCCDensity <- function(pmf_table = pmf_table) {

density_table <- matrix(
nrow = length(pmf_table[, 1]),
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ncol = length(pmf_table[1, ])
)

for (i in 1:length(pmf_table[, 1])) {
for (j in 1:length(pmf_table[1, ])) {

density_table[i, j] <- pmf_table[i, j] / ((sum(pmf_table[i, ])
* sum(pmf_table[, j])))

}
}
return(density_table)

}

# generalized version to get density of the checkerboard copula
getCCDensity_2 <- function(data = df) {

# browser()
data_int <- unique(data) |>

mutate(across(.cols = everything(), as.numeric))
pmfs <- lapply(1:ncol(data), getPMF, data = data)
cc_prod <- data.frame()
for (i in 1:nrow(data_int)) {

c <- c()
for (j in 1:length(pmfs)) {

c <- append(c, pmfs[[j]][data_int[i, j]])
}
cc_prod <- rbind(cc_prod, c)

}
cc_prod <- cc_prod |>

mutate(prod = Reduce(`*`, cc_prod))
return_data <- getJointPMF_freq(data = data) |>

mutate(cc_value = freq / cc_prod$prod)
return(return_data)

}

# get density for a given u and v from density table above
getDensity <- function(u = 0.5, v = 1 / 8, pmf_table = pmf_table) {

Xcdf <- getCDF(var_index = 1)
Ycdf <- getCDF(var_index = 2)
X <- findInterval(u, Xcdf, left.open = TRUE, rightmost.closed = TRUE)
Y <- findInterval(v, Ycdf, left.open = TRUE, rightmost.closed = TRUE)
getCCDensity(pmf_table = pmf_table)[X, Y]

}
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# general version
getDensity_2 <- function(vec = c(0.25, 0.3), data = df) {

# browser()
cdfs <- lapply(1:ncol(data), getCDF, data = data)
values <- mapply(FUN = function(x, y) {

findInterval(y, x, left.open = TRUE, rightmost.closed = TRUE)
}, x = cdfs, y = vec)
density <- getCCDensity_2(data = data) |>

mutate(across(.cols = everything(), as.numeric))
for (i in 1:length(vec)) {

density <- density[density[, i] == values[i], ]
}
return(density)

}

### Checkerboard copula score
# ridits, using the zoo package to find mean of
# adjacent values in the cdf
getScores <- function(data = Xcdf) {

rollmean(data, 2)
}

# calculate CC
getCheckerboardCopula <- function(u = 0.3, v = 0.3, data = df) {

Xcdf <- getCDF(var_index = 1, data = data)
Ycdf <- getCDF(var_index = 2, data = data)
if ("data.frame" %in% class(data)) {

joint_pmf <- getJointPMF(data = data)
} else {

joint_pmf <- data
}
# get greatest and least elements such that inf_u <= u <= sup_u
inf_u <- max(Xcdf[Xcdf <= u])
sup_u <- min(Xcdf[Xcdf >= u])

# get greatest and least elements such that inf_v <= v <= sup_v
inf_v <- max(Ycdf[Ycdf <= v])
sup_v <- min(Ycdf[Ycdf >= v])

# get lambda and mu
lambda <- ifelse(inf_u < sup_u, (u - inf_u) / (sup_u - inf_u), 1)
mu <- ifelse(inf_v < sup_v, (v - inf_v) / (sup_v - inf_v), 1)
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# find category of X and Y that matches u and v
inf_u_index <- findInterval(inf_u, Xcdf,

left.open = TRUE,
rightmost.closed = TRUE

)
sup_u_index <- findInterval(sup_u, Xcdf,

left.open = TRUE,
rightmost.closed = TRUE

)

inf_v_index <- findInterval(inf_v, Ycdf,
left.open = TRUE,
rightmost.closed = TRUE

)
sup_v_index <- findInterval(sup_v, Ycdf,

left.open = TRUE,
rightmost.closed = TRUE

)

# calculate the Checkerboard copula distribution function
CC_df <- (1 - lambda) * (1 - mu) * getJointCDF(

u = inf_u, v = inf_v,
data = data

) +
(1 - lambda) * (mu) *

getJointCDF(u = inf_u, v = sup_v, data = data) +
(lambda) * (1 - mu) *

getJointCDF(u = sup_u, v = inf_v, data = data) +
(lambda) * (mu) *

getJointCDF(u = sup_u, v = sup_v, data = data)
# find joint cdf
return(CC_df)

}

# general
getCheckerboardCopula_2 <- function(idx_vec = c(0.4, 0.4),

data = df) {
# browser()
cdfs <- lapply(1:ncol(data), getCDF, data = data)
inf_values <- mapply(FUN = function(cdf, vec) {

max(cdf[cdf <= vec])

109



}, cdf = cdfs, vec = idx_vec)
sup_values <- mapply(FUN = function(cdf, vec) {

min(cdf[cdf >= vec])
}, cdf = cdfs, vec = idx_vec)
lambdas <- mapply(FUN = function(sup, inf, vec) {

ifelse(inf < sup, (vec - inf) / (sup - inf), 1)
}, sup = sup_values, inf = inf_values, vec = c)
# find category of X and Y that matches u and v
sup_idx <- mapply(FUN = function(cdf, vec) {

findInterval(vec, cdf, left.open = TRUE, rightmost.closed = TRUE)
}, cdf = cdfs, vec = sup_values)
inf_idx <- mapply(FUN = function(cdf, vec) {

findInterval(vec, cdf, left.open = TRUE, rightmost.closed = TRUE)
}, cdf = cdfs, vec = inf_values)
subsets <- sets::set_power(1:ncol(data))
sum <- 0
for (i in subsets) {

prod <- 1
idx_vector <- c()
for (j in c(1:ncol(data))) {

if (j %in% i) {
prod <- prod * lambdas[j]
idx_vector <- append(idx_vector, sup_idx[j])

} else {
prod <- prod * (1 - lambdas[j])
idx_vector <- append(idx_vector, inf_idx[j])

}
}
sum <- sum + (prod *

getJointCDF_2(idx_vec = idx_vector, data = data))
}
return(sum)

}

# get variance of CC
getVariance <- function(var_index = 1, data = df) {

# browser()
pmf <- getPMF_2(var_index = var_index, data = data)
cdf <- getCDF(var_index = var_index, data = data)
var <- 0
for (i in 1:nrow(unique((data[, var_index])))) {
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var <- var + cdf[i] * cdf[i + 1] * pmf[i] / 4
}
return(var)

}

# var_index = variable of interest regressed on the other variable
# if var_index = 1, then we are regressing X on Y,
# else we regress Y on X
getRegression <- function(var_index = 1, data = df) {

length_var1 <- length(levels(factor(data[, var_index])))
length_var2 <- length(levels(factor(data[, -var_index])))
Xcdf <- getCDF(var_index = 1, data = data)
Xscores <- getScores(data = Xcdf)
Ycdf <- getCDF(var_index = 2, data = data)
Yscores <- getScores(data = Ycdf)

# getting conditional pmfs
Y_X <- getConditionalPMF(var_index = 2, data = data)
X_Y <- getConditionalPMF(var_index = 1, data = data)

# Y on X
if (var_index == 2) {

regression_table <- tibble(
index = levels(cut(c(0, 1), breaks = Xcdf)), regression = NA

)
for (i in 1:length_var2) {

sum <- 0
for (j in 1:length_var1) {

sum <- sum + Y_X[i, j] * Yscores[j]
}
regression_table[i, 2] <- sum

}
}
# X on Y
else {

regression_table <- tibble(
index = levels(cut(c(0, 1), breaks = Ycdf)), regression = NA

)
for (j in 1:length_var2) {

sum <- 0
for (i in 1:length_var1) {
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sum <- sum + X_Y[i, j] * Xscores[i]
}
regression_table[j, 2] <- sum

}
}

return(regression_table)
}

# general version
getRegression_2 <- function(var_index = 1, data = df) {

# browser()
cdf <- getCDF(var_index = var_index, data = data)
scores <- getScores(data = cdf)
# getting conditional pmfs
conditional_pmf <- getConditionalPMFwo(

var_index = var_index,
data = data

) |>
mutate(across(.cols = everything(), as.numeric))

grouping_cols <- c(1:ncol(data))[-var_index]
scores_vec <- lapply(conditional_pmf[, var_index],

FUN = function(x) scores[x]
)
combined <- cbind(conditional_pmf, scores_vec)
colnames(combined)[ncol(combined)] <- "score"
regression_data <- combined |>

mutate(regression = freq_cond * score) |>
group_by(across(grouping_cols)) |>
summarize(reg = sum(regression))

# regression_data <- cbind(regression_data,
# levels(cut(c(0, 1), breaks = cdf)))

return(regression_data)
}

# predicting from regression
# explanatory index is the category level of X
# so explanatory_index = 3 indicates that when X = 3,
# it predicts what Y is
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getPredictionY <- function(explanatory_index = 3, data = df) {
regression <- getRegression(var_index = 2, data = data)
Ycdf <- getCDF(var_index = 2, data = data)
x <- findInterval(regression[explanatory_index, 2], Ycdf)
return(x)

}

getPredictionX <- function(explanatory_index = 3, data = df) {
regression <- getRegression(var_index = 1, data = data)
Xcdf <- getCDF(var_index = 1, data = data)
x <- findInterval(regression[explanatory_index, 2], Xcdf)
return(x)

}

# general version
getPrediction <- function(var_index = 1, idx_vec = c(1, 2),

data = df) {
regression <- getRegression_2(var_index = var_index, data = data)
cdf <- getCDF(var_index = var_index, data = data)
# for each element in the idx_vec
for (i in 1:length(idx_vec)) {

# print(i)
regression <- regression[regression[, i] == idx_vec[i], ]

}
pred_val <- findInterval(regression$reg, cdf)
if (!length(pred_val)) {

return("no prediction")
}
return(pred_val)

}

# function to get beccr, takes a dataframe or a table
getBECCR <- function(data = df, var_index = 2) {

# browser()
if ("data.frame" %in% class(data)) {

data_pmf <- getJointPMF(data = data)
}
# data <- as.table(data)
conditional_table <- getConditionalPMF(

var_index =
var_index, data = data

)
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length_var1 <- length(conditional_table[1, ])
length_var2 <- length(conditional_table[, 1])

scores <- getScores(data = getCDF(
var_index = var_index,
data = data

))

if (var_index == 2) {
pmf <- getPMF(var_index = 1, data = data)

sum_i <- 0
for (i in 1:length_var2) {

sum_j <- 0
for (j in 1:length_var1) {

sum_j <- sum_j + (conditional_table[i, j] * scores[j])
}
sum_i <- sum_i + ((sum_j - (1 / 2))ˆ2 * pmf[i])

}
rho <- 12 * sum_i

} else {
pmf <- getPMF(var_index = 2, data = data)

sum_j <- 0
for (j in 1:length_var2) {

sum_i <- 0
for (i in 1:length_var1) {

sum_i <- sum_i + (conditional_table[i, j] * scores[i])
}
sum_j <- sum_j + ((sum_i - (1 / 2))ˆ2 * pmf[j])

}
rho <- 12 * sum_j

}
return(rho)

}

# generalized version
getBECCR_2 <- function(var_index = 2, data = df) {

# browser()
regression_table <- getRegression_2(

var_index =
var_index, data = data
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)
pmfwo <- getPMFwo(var_index = var_index, data = data) |>

mutate(across(everything(), as.numeric))
regression_table <- left_join(regression_table,

pmfwo,
by = colnames(data[-var_index])

)
beccr <- regression_table |>

mutate(temp = (reg - (1 / 2))ˆ2 * freq)

return(12 * sum(beccr$temp))
}

Code to generate a toy example used throughout the chapter as shown in Table

4.1.

# toy data from key paper
X <- factor(c("Very Low", "Low", "Medium", "High", "Very High"),

levels = c("Very Low", "Low", "Medium", "High", "Very High")
)
Y <- factor(c("Severe", "Moderate", "Mild", "Moderate", "Severe"),

levels = c("Mild", "Moderate", "Severe")
)
toy_data <- data.frame(

row.names = 1:8,
X = rep(X, times = c(2, 1, 2, 1, 2)),
Y = rep(Y, times = c(2, 1, 2, 1, 2))

)
toy_pmf <- getJointPMF(data = toy_data)

Code to generate a grid of values to plot the surface plots of the subcopula,

checkerboard copula as well as their dependencies.

source("scripts.R")
pmf_table <- getJointPMF(data = df)
CC <- getCCDensity(pmf_table = pmf_table)
n.grid <- 26
u <- seq(0, 1, length.out = n.grid)
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grid <- expand.grid("u1" = u, "u2" = u)
grid_CsCDF <- grid %>%

rowwise() %>%
mutate(subcopula = getJointCDF(u = u1, v = u2, data = df))

grid_CsPMF <- grid %>%
rowwise() %>%
mutate(subcopula = findJointPMF(u = u1, v = u2, data = df))

grid_ccCDF <- grid %>%
rowwise() %>%
mutate(Checkerboard = getCheckerboardCopula(u = u1,

v = u2, data = df))

grid_ccPMF <- grid %>%
rowwise() %>%
mutate(density = getDensity(u = u1, v = u2, pmf_table = pmf_table))

saveRDS(grid_CsCDF, "data/grid_CsCDF.rds")
saveRDS(grid_CsPMF, "data/grid_CsPMF.rds")
saveRDS(grid_ccCDF, "data/grid_ccCDF.rds")
saveRDS(grid_ccPMF, "data/grid_ccPMF.rds")

Code for Figure 4.2.

grid_CsCDF <- readRDS("data/grid_CsCDF.rds")
grid_CsPMF <- readRDS("data/grid_CsPMF.rds")
grid_ccCDF <- readRDS("data/grid_ccCDF.rds")
grid_ccPMF <- readRDS("data/grid_ccPMF.rds")
# subcopula CDF
a <- copula::wireframe2(grid_CsCDF,

xlab = "u",
ylab = "v",
zlab = list("Subcopula", rot = 90),
par.settings = list(

axis.text = list(cex = .5),
layout.heights =

list(
top.padding = 0,
bottom.padding = -4

),
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layout.widths =
list(

left.padding = 0,
right.padding = -4

)
)

)

# subcopula PMF
b <- copula::wireframe2(grid_CsPMF,

xlab = "u",
ylab = "v",
zlab = list("Density", rot = 90),
par.settings = list(

axis.text = list(cex = .5),
layout.heights =

list(
top.padding = 0,
bottom.padding = -4

),
layout.widths =

list(
left.padding = -20,
right.padding = 0

)
)

)
# CC CDF
c <- wireframe2(grid_ccCDF,

xlab = "u",
ylab = "v",
zlab = list("Chcckerboard", rot = 90),
par.settings = list(

axis.text = list(cex = .5),
layout.heights =

list(
top.padding = -4,
bottom.padding = 0

),
layout.widths =

list(
left.padding = 0,
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right.padding = -4
)

)
)
# c+
d <- wireframe2(grid_ccPMF,

xlab = "u",
ylab = "v",
zlab = list("Density", rot = 90),
par.settings = list(

axis.text = list(cex = .5),
layout.heights =

list(
top.padding = -4,
bottom.padding = 0

),
layout.widths =

list(
left.padding = -20,
right.padding = 0

)
)

)
gridExtra::grid.arrange(a, b,

c, d,
nrow = 2, ncol = 2

)

Code for Example 9.

getScores(data = getCDF(var_index = 1, data = toy_data))
getScores(data = getCDF(var_index = 2, data = toy_data))
getVariance(var_index = 1, data = toy_data)
getVariance(var_index = 2, data = toy_data)

Code for Table 4.2.
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getConditionalPMF(var_index = 2, data = toy_data)
getRegression(var_index = 2, data = toy_data)
getRegression(var_index = 1, data = toy_data)
getConditionalPMF(var_index = 1, data = toy_data)

Code to obtain the CCRAM and variance for Example 12.

getBECCR(data = toy_data, var_index = 2)
12 * getVariance(var_index = 2, data = toy_data)
getBECCR(data = toy_data, var_index = 2) /

(12 * getVariance(var_index = 2, data = toy_data))

A.4 Code for Chapter 5

In this section, we include the code to generate the simulations as well as graph the

boxplots. For the actual boxplots, see Appendix B.

############# Preliminary Functions #############
# sample from discrete uniform
runifdisc <- function(n, min = 0, max = 1) {

sample(min:max, n,
replace = T

)
}

# stretches a frequency table so that each row is an observation
countsToCases <- function(x, countcol = "Freq") {

idx <- rep.int(seq_len(nrow(x)), x[[countcol]])
x[[countcol]] <- NULL
x[idx, ]

}
# get logit / invlogit
logit <- function(p) {

return(log(p / (1 - p)))
}
invlogit <- function(p) {

return(1 / (1 + exp(-p)))
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}
invlogit_2 <- function(p) {

return(exp(p) / (1 + exp(p)))
}

############# Generate Data and Simulations #############
# generate data based on specified CLM model
generateData <- function(Icat = 3, Jcat = 3, alpha = c(-.69, 0.69),

beta = 0, size = 200) {
# create true joint pmf by first getting conditional probabilities
truematrix <- matrix(NA, nrow = Icat, ncol = Jcat)
for (imat in 1:Icat) {

for (jmat in 1:(Jcat - 1)) {
truematrix[imat, jmat] <- invlogit(alpha[jmat] - beta * imat)

}
}
truematrix[, Jcat] <- 1 # add ones to the end since Jcat-1
px <- rep(1 / Icat, Icat) # true uniform margins for x
truemat <- cbind(truematrix[, 1], truematrix[, 2:(Jcat)] -

truematrix[, 1:(Jcat - 1)]) * px

# simulate using rmultinom
simtabmat <- matrix(rmultinom(1, size = size, prob = truemat),

nrow = Icat, ncol = Jcat, byrow = F
)
simtab <- as.table(simtabmat) # convert to table
rownames(simtab) <- 1:Icat
colnames(simtab) <- 1:Jcat
simtab <- as.data.frame(simtab) # convert to data frame
names(simtab) <- c("x", "y", "Freq") # Changing names of columns
simtab$x <- as.numeric(simtab$x) # Convert X to numeric
# Convert X to ordered levels
simtab$y <- ordered(simtab$y, levels = 1:Jcat)
x <- countsToCases(simtab)$x
y <- countsToCases(simtab)$y
casedata <- data.frame(x = as.numeric(x), y = y)
casedata$y <- as.factor(casedata$y)
return(casedata)

}

# function so that I can simulate for
# no association or linear association
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no_linear_simulation <- function(Icat = 3, Jcat = 3,
alpha = c(-0.69, 0.69),
beta = 0,
sample_size_vec = c(500, 1000, 2000)) {

# browser()
return_data <- data.frame(

size = NA, model_free = NA, model = NA,
model_poor = NA, count = NA

)
# generate the data for each sample size
for (size in sample_size_vec) {

model_check <- FALSE
count <- 0
while (!model_check) {

data <- generateData(
Icat = Icat, Jcat = Jcat, alpha = alpha,
beta = beta, size = size

)
# if beta = 0, find no association else find linear association
# for the poor model, choose linear
# assoc if there none and vice versa
# then perform goodness of fit test to see if model is good
if (beta == 0) {

logit.m <- VGAM::vglm(
formula = y ~ 1, data = data,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)
logit.poor <- VGAM::vglm(

formula = y ~ x, data = data,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)

} else {
logit.m <- VGAM::vglm(
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formula = y ~ x, data = data,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)
logit.poor <- VGAM::vglm(

formula = y ~ 1, data = data,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)

}
cond_tab <- cbind(invlogit(predict(logit.m,

newdata = data.frame(x = 1:Icat)
)), 1)
cond_tab_poor <- cbind(invlogit(predict(logit.poor,

newdata = data.frame(x = 1:Icat)
)), 1)

cond_pmf <- cbind(cond_tab[, 1], cond_tab[, 2:Jcat] -
cond_tab[, 1:Jcat - 1])

cond_pmf_poor <- cbind(
cond_tab_poor[, 1],
cond_tab_poor[, 2:Jcat] -

cond_tab_poor[, 1:Jcat - 1]
)

# check if model is a good fit and check if
# poor model is a good fit too
# this is pearsons GoF calculation
data_table <- table(data$x, data$y)
sum <- 0
sum_poor <- 0
for (i in 1:Icat) {

n_row <- sum(data_table[i, ])
for (j in 1:Jcat) {

mu_hat <- n_row * cond_pmf[i, j]
mu_hat_poor <- n_row * cond_pmf_poor[i, j]
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sum <- sum + ((data_table[i, j] - mu_hat)ˆ2 / mu_hat)
sum_poor <- sum_poor + ((data_table[i, j] -

mu_hat_poor)ˆ2 / mu_hat_poor)
}

}
if (beta == 0) {

model_check <- TRUE
} else if (1 - pchisq(sum, df = Icat *

(Jcat - 1) - Jcat) >= 0.05 &
1 - pchisq(sum_poor, df = Icat *

(Jcat - 1) - (Jcat - 1)) < 0.05) {
model_check <- TRUE

}
count <- count + 1

}
px <- getPMF(var_index = 1, data = data)
model_tab <- cbind(cond_tab[, 1], cond_tab[, 2:(Jcat)] -

cond_tab[, 1:(Jcat - 1)]) * px
model_tab_poor <- cbind(

cond_tab_poor[, 1],
cond_tab_poor[, 2:(Jcat)] -

cond_tab_poor[, 1:(Jcat - 1)]
) * px

model_free_BECCR <- getBECCR_2(var_index = 2, data = data)
model_BECCR <- getBECCR(data = model_tab)
model_poor_BECCR <- getBECCR(data = model_tab_poor)
return_data <- rbind(return_data, c(

size, model_free_BECCR,
model_BECCR, model_poor_BECCR, count

))
}
return(return_data[-1, ] |> remove_rownames() |>

mutate(size = as.factor(size)))
}

# generate data based on nonmonotone model
# structure is the same as the other data
# generating functions except with a different model
generateData_nonmonotone <- function(Icat = 3, Jcat = 3,

alpha = c(-10.92, -8.91),
beta1 = -12, beta2 = 3,
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size = 200) {
truematrix <- matrix(NA, nrow = Icat, ncol = Jcat)
for (imat in 1:Icat) {

for (jmat in 1:(Jcat - 1)) {
truematrix[imat, jmat] <- invlogit(alpha[jmat] -

beta1 * imat - beta2 * imatˆ2)
}

}
truematrix[, Jcat] <- 1
px <- rep(1 / Icat, Icat)
truemat <- cbind(truematrix[, 1], truematrix[, 2:(Jcat)] -

truematrix[, 1:(Jcat - 1)]) * px

simtabmat <- matrix(rmultinom(1, size = size, prob = truemat),
nrow = Icat, ncol = Jcat, byrow = F

)
simtab <- as.table(simtabmat)
rownames(simtab) <- 1:Icat
colnames(simtab) <- 1:Jcat
simtab <- as.data.frame(simtab) # convert to data frame
names(simtab) <- c("x", "y", "Freq") # Changing names of columns
simtab$x <- as.numeric(simtab$x) # Convert X to numeric
# Convert X to ordered levels
simtab$y <- ordered(simtab$y, levels = 1:Jcat)
x <- countsToCases(simtab)$x
y <- countsToCases(simtab)$y
casedata <- data.frame(x = x, y = y)
return(casedata)

}

# function so that I can simulate for nonmonotone association
nonmonotone_simulation <- function(Icat = 3, Jcat = 3,

alpha = c(-10.92, -8.91),
beta1 = -12, beta2 = 3,
sample_size_vec =

c(500, 1000, 2000)) {
return_data <- data.frame(

size = NA, model_free = NA, model = NA,
model_linear = NA, model_no = NA,
count = NA

)
for (size in sample_size_vec) {
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model_check <- FALSE
count <- 0
while (model_check == FALSE) {

data <- generateData_nonmonotone(
Icat = Icat, Jcat = Jcat,
alpha = alpha, beta1 = beta1,
beta2 = beta2, size = size

)
logit.m <- VGAM::vglm(

formula = y ~ x + I(xˆ2), data = data,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)
logit.no <- VGAM::vglm(

formula = y ~ 1, data = data,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)
logit.linear <- VGAM::vglm(

formula = y ~ x, data = data,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)

cond_tab <- cbind(invlogit(predict(logit.m,
newdata =

data.frame(x = 1:Icat)
)), 1)
cond_tab_no <- cbind(invlogit(predict(logit.no,

newdata =
data.frame(x = 1:Icat)

)), 1)
cond_tab_linear <- cbind(invlogit(predict(logit.linear,
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newdata =
data.frame(x = 1:Icat)

)), 1)

cond_pmf <- cbind(cond_tab[, 1], cond_tab[, 2:Jcat] -
cond_tab[, 1:Jcat - 1])

cond_pmf_no <- cbind(cond_tab_no[, 1], cond_tab_no[, 2:Jcat] -
cond_tab_no[, 1:Jcat - 1])

cond_pmf_linear <- cbind(
cond_tab_linear[, 1],
cond_tab_linear[, 2:Jcat] - cond_tab_linear[, 1:Jcat - 1]

)

data_table <- table(data$x, data$y)
sum <- 0
sum_no <- 0
sum_linear <- 0
for (i in 1:Icat) {

n_row <- sum(data_table[i, ])
for (j in 1:Jcat) {

mu_hat <- n_row * cond_pmf[i, j]
mu_hat_no <- n_row * cond_pmf_no[i, j]
mu_hat_linear <- n_row * cond_pmf_linear[i, j]

sum <- sum + ((data_table[i, j] -
mu_hat)ˆ2 / mu_hat)

sum_no <- sum_no + ((data_table[i, j] -
mu_hat_no)ˆ2 / mu_hat_no)

sum_linear <- sum_linear +
((data_table[i, j] - mu_hat_linear)ˆ2 / mu_hat_linear)

}
}

if (1 - pchisq(sum, df = Icat * (Jcat - 1) -
(Jcat - 1) - 2) >= 0.05 &
1 - pchisq(sum_no, df = Icat * (Jcat - 1) -

Jcat) < 0.05 &
1 - pchisq(sum_linear, df = Icat * (Jcat - 1) -

(Jcat - 1)) < 0.05) {
model_check <- TRUE

}
count <- count + 1
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}

px <- getPMF(var_index = 1, data = data)
model_tab <- cbind(cond_tab[, 1], cond_tab[, 2:(Jcat)] -

cond_tab[, 1:(Jcat - 1)]) * px
model_tab_linear <- cbind(

cond_tab_linear[, 1],
cond_tab_linear[, 2:(Jcat)] -

cond_tab_linear[, 1:(Jcat - 1)]
) * px
model_tab_no <- cbind(

cond_tab_no[, 1],
cond_tab_no[, 2:(Jcat)] - cond_tab_no[, 1:(Jcat - 1)]

) * px

model_free_BECCR <- getBECCR(var_index = 2, data = data)
model_BECCR <- getBECCR(data = model_tab)
model_BECCR_linear <- getBECCR(data = model_tab_linear)
model_BECCR_no <- getBECCR(data = model_tab_no)

return_data <- rbind(return_data, c(
size, model_free_BECCR,
model_BECCR, model_BECCR_linear,
model_BECCR_no, count

))
}

return(return_data[-1, ] |> remove_rownames() |>
mutate(size = as.factor(size)))

}

# generate data based on nominal model
generateData_nominal <- function(Icat = 3, Jcat = 3,

alpha = c(-.69, 0.69),
tau = c(0, 0, 0), size = 200) {

truematrix <- matrix(NA, nrow = Icat, ncol = Jcat)
for (imat in 1:Icat) {

for (jmat in 1:(Jcat - 1)) {
truematrix[imat, jmat] <- invlogit(alpha[jmat] + tau[imat])

}
}
truematrix[, Jcat] <- 1
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px <- rep(1 / Icat, Icat) # uniform margins for x
truemat <- cbind(truematrix[, 1], truematrix[, 2:(Jcat)] -

truematrix[, 1:(Jcat - 1)]) * px

simtabmat <- matrix(rmultinom(1, size = size, prob = truemat),
nrow = Icat, ncol = Jcat, byrow = F

)
simtab <- as.table(simtabmat) # convert to table
rownames(simtab) <- 1:Icat
colnames(simtab) <- 1:Jcat
simtab <- as.data.frame(simtab) # convert to data frame
names(simtab) <- c("x", "y", "Freq") # Changing names of columns
simtab$x <- as.numeric(simtab$x) # Convert X to numeric
# Convert X to ordered levels
simtab$y <- ordered(simtab$y, levels = 1:Jcat)
x <- countsToCases(simtab)$x
y <- countsToCases(simtab)$y
casedata <- data.frame(x = as.factor(x), y = y)
casedata$y <- as.factor(casedata$y)
return(casedata)

}

nominal_simulation <- function(Icat = 3, Jcat = 3,
alpha = c(-.69, 0.69),
tau = c(0, 0, 0),
sample_size_vec = c(

500,
1000, 2000

)) {
return_data <- data.frame(

size = NA, model_free = NA, model = NA,
model_poor = NA, count = NA

)
# generate the data for each sample size
for (size in sample_size_vec) {

model_check <- FALSE
count <- 0
while (!model_check) {

data <- generateData_nominal(
Icat = Icat,
Jcat = Jcat,
alpha = alpha,
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tau = tau, size = size
)

# Getting model

logit.m <- VGAM::vglm(
formula = y ~ relevel(x, ref = Icat), data = data,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)
logit.poor <- VGAM::vglm(

formula = y ~ 1, data = data,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)

coef <- append(logit.m@coefficients, 0,
after = (Jcat + Icat - 1)

)
coef_poor <- rep(0, Icat)

cond_tab <- matrix(NA, nrow = Icat, ncol = Jcat)
cond_tab_poor <- matrix(NA, nrow = Icat, ncol = Jcat)

for (imat in 1:Icat) {
for (jmat in 1:(Jcat - 1)) {

cond_tab[imat, jmat] <- invlogit(logit.m@coefficients[jmat] +
coef[Jcat - 1 + imat])

cond_tab_poor[imat, jmat] <- invlogit(
logit.poor@coefficients[jmat] +

coef_poor[imat]
)

}
}
cond_tab[, Jcat] <- 1
cond_tab_poor[, Jcat] <- 1
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cond_pmf <- cbind(cond_tab[, 1], cond_tab[, 2:Jcat] -
cond_tab[, 1:Jcat - 1])

cond_pmf_poor <- cbind(
cond_tab_poor[, 1],
cond_tab_poor[, 2:Jcat] -

cond_tab_poor[, 1:Jcat - 1]
)

data_table <- table(data$x, data$y)
sum <- 0
sum_poor <- 0
for (i in 1:Icat) {

n_row <- sum(data_table[i, ])
for (j in 1:Jcat) {

mu_hat <- n_row * cond_pmf[i, j]
mu_hat_poor <- n_row * cond_pmf_poor[i, j]
sum <- sum + ((data_table[i, j] -

mu_hat)ˆ2 / mu_hat)
sum_poor <- sum_poor + ((data_table[i, j] -

mu_hat_poor)ˆ2 / mu_hat_poor)
}

}

if (1 - pchisq(sum, df = Icat * (Jcat - 1) - (Jcat - 1) -
(Icat - 1)) >= 0.05 &
1 - pchisq(sum_poor, df = Icat * (Jcat - 1) -

(Jcat - 1)) < 0.05) {
model_check <- TRUE

}
count <- count + 1

}

px <- getPMF(var_index = 1, data = data)
model_tab <- cbind(cond_tab[, 1], cond_tab[, 2:(Jcat)] -

cond_tab[, 1:(Jcat - 1)]) * px
model_poor_tab <- cbind(

cond_tab_poor[, 1],
cond_tab_poor[, 2:(Jcat)] -

cond_tab_poor[, 1:(Jcat - 1)]
) * px
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model_free_BECCR <- getBECCR(var_index = 2, data = data)
model_BECCR <- getBECCR(data = model_tab)
model_poor_BECCR <- getBECCR(data = model_poor_tab)
return_data <- rbind(return_data, c(

size, model_free_BECCR,
model_BECCR, model_poor_BECCR, count

))
}

return(return_data[-1, ] |> remove_rownames() |>
mutate(size = as.factor(size)))

}

A.4.1 Code to perform the simulations

Simulation code for no association.

set.seed(713)
no_assoc_33 <- replicate(1000,

no_linear_simulation(
Icat = 3, Jcat = 3,
alpha = c(-0.69, 0.69), beta = 0,
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

no_assoc_35 <- replicate(1000,
no_linear_simulation(

Icat = 3, Jcat = 5,
alpha = c(

-1.39, -0.41,
0.41, 1.39

),
beta = 0,
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sample_size_vec = c(
500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

no_assoc_53 <- replicate(1000,
no_linear_simulation(

Icat = 5, Jcat = 3,
alpha = c(-0.69, 0.69),
beta = 0,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

no_assoc_55 <- replicate(1000,
no_linear_simulation(

Icat = 5, Jcat = 5,
alpha = c(

-1.39, -0.41,
0.41, 1.39

),
beta = 0,
sample_size_vec = c(

500, 1000,
2000
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)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(no_assoc_33, "simulations/no_assoc_33.Rds")
saveRDS(no_assoc_35, "simulations/no_assoc_35.Rds")
saveRDS(no_assoc_53, "simulations/no_assoc_53.Rds")
saveRDS(no_assoc_55, "simulations/no_assoc_55.Rds")

Simulation code for weak association.

set.seed(713)
# weak linear associations

weak_assoc_33 <- replicate(1000,
no_linear_simulation(

Icat = 3, Jcat = 3,
alpha = c(-0.21, 1.2),
beta = 0.25,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

weak_assoc_35 <- replicate(1000,
no_linear_simulation(

Icat = 3, Jcat = 5,
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alpha = c(
-0.9, 0.09,
0.91, 1.9

),
beta = 0.25,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

weak_assoc_53 <- replicate(1000,
no_linear_simulation(

Icat = 5, Jcat = 3,
alpha = c(0.04, 1.47),
beta = 0.25,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

weak_assoc_55 <- replicate(1000,
no_linear_simulation(

Icat = 5, Jcat = 5,
alpha = c(

-0.67, 0.33,
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1.17, 2.17
),
beta = 0.25,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(weak_assoc_33, "simulations/weak_assoc_33.Rds")
saveRDS(weak_assoc_35, "simulations/weak_assoc_35.Rds")
saveRDS(weak_assoc_53, "simulations/weak_assoc_53.Rds")
saveRDS(weak_assoc_55, "simulations/weak_assoc_55.Rds")

Simulation code for moderate association.

set.seed(713)
# moderate linear association
moderate_assoc_33 <- replicate(1000,

no_linear_simulation(
Icat = 3, Jcat = 3,
alpha = c(0.93, 2.48),
beta = 0.85,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")
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)

moderate_assoc_35 <- replicate(1000, no_linear_simulation(
Icat = 3, Jcat = 5,
alpha = c(

0.17, 1.25,
2.16, 3.23

),
beta = 0.85,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

moderate_assoc_53 <- replicate(1000, no_linear_simulation(
Icat = 5, Jcat = 3,
alpha = c(1.63, 3.47),
beta = 0.85,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

moderate_assoc_55 <- replicate(1000, no_linear_simulation(
Icat = 5, Jcat = 5,
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alpha = c(
0.76, 2,
3.1, 4.33

),
beta = 0.85,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(moderate_assoc_33, "simulations/moderate_assoc_33.Rds")
saveRDS(moderate_assoc_35, "simulations/moderate_assoc_35.Rds")
saveRDS(moderate_assoc_53, "simulations/moderate_assoc_53.Rds")
saveRDS(moderate_assoc_55, "simulations/moderate_assoc_55.Rds")

Simulation code for strong association.

set.seed(713)
strong_assoc_33 <- replicate(1000,

no_linear_simulation(
Icat = 3,
Jcat = 3,
alpha = c(1.9, 3.7),
beta = 1.4,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(
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cols = c(model_free, model, model_poor),
names_to = c("type")

)

strong_assoc_35 <- replicate(1000,
no_linear_simulation(

Icat = 3,
Jcat = 5,
alpha = c(

1.05, 2.27,
3.33, 4.55

),
beta = 1.4,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

strong_assoc_53 <- replicate(1000,
no_linear_simulation(

Icat = 5,
Jcat = 3,
alpha = c(2.95, 5.45),
beta = 1.4,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
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names_to = c("type")
)

strong_assoc_55 <- replicate(1000,
no_linear_simulation(

Icat = 5,
Jcat = 5,
alpha = c(

1.84, 3.46,
4.95, 6.55

),
beta = 1.4,
sample_size_vec = c(

500, 1000,
2000

)
),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(strong_assoc_33, "simulations/strong_assoc_33.Rds")
saveRDS(strong_assoc_35, "simulations/strong_assoc_35.Rds")
saveRDS(strong_assoc_53, "simulations/strong_assoc_53.Rds")
saveRDS(strong_assoc_55, "simulations/strong_assoc_55.Rds")

Simulation code for very strong association.

set.seed(713)
very_assoc_33 <- replicate(1000,

no_linear_simulation(
Icat = 3,
Jcat = 3,
alpha = c(2.9, 5.1),
beta = 2, sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
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) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

very_assoc_35 <- replicate(1000,
no_linear_simulation(

Icat = 3, Jcat = 5,
alpha = c(1.90, 3.34, 4.66, 6.10), beta = 2,
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

very_assoc_53 <- replicate(1000,
no_linear_simulation(

Icat = 5, Jcat = 3,
alpha = c(4.30, 7.69),
beta = 2,
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

very_assoc_55 <- replicate(1000,
no_linear_simulation(

Icat = 5, Jcat = 5,
alpha = c(2.9, 5, 7, 9),
beta = 2,
sample_size_vec = c(500, 1000, 2000)
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),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(very_assoc_33, "simulations/very_assoc_33.Rds")
saveRDS(very_assoc_35, "simulations/very_assoc_35.Rds")
saveRDS(very_assoc_53, "simulations/very_assoc_53.Rds")
saveRDS(very_assoc_55, "simulations/very_assoc_55.Rds")

Simulation code for nonmonotone nonlinear association.

set.seed(713)
nonmonotone_33 <- replicate(1000,

nonmonotone_simulation(
Icat = 3, Jcat = 3,
alpha = c(-10.92, -8.91),
beta1 = -12, beta2 = 3,
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_linear, model_no),
names_to = c("type")

)

nonmonotone_35 <- replicate(1000,
nonmonotone_simulation(

Icat = 3, Jcat = 5,
alpha = c(-11.98, -10.46, -9.28, -8.11),
beta1 = -12, beta2 = 3,
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
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) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_linear, model_no),
names_to = c("type")

)

nonmonotone_53 <- replicate(1000,
nonmonotone_simulation(

Icat = 5, Jcat = 3,
# alpha = c(-25.49, -19.45),
alpha = c(-24.52, -16.62),
beta1 = -18, beta2 = 3,
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_linear, model_no),
names_to = c("type")

)

nonmonotone_55 <- replicate(1000,
nonmonotone_simulation(

Icat = 5, Jcat = 5,
alpha = c(-25.92, -23.91, -19.51, -15.01),
# alpha = c(-26.82, -24.84, -22.54, -15.42),
beta1 = -18, beta2 = 3,
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_linear, model_no),
names_to = c("type")

)

saveRDS(nonmonotone_33, "simulations/nonmonotone_33.Rds")
saveRDS(nonmonotone_35, "simulations/nonmonotone_35.Rds")
saveRDS(nonmonotone_53, "simulations/nonmonotone_53.Rds")
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saveRDS(nonmonotone_55, "simulations/nonmonotone_55.Rds")

Simulation code for no association for a nominal variable.

set.seed(713)
no_nominal_33 <- replicate(1000,

nominal_simulation(
Icat = 3, Jcat = 3,
alpha = c(-0.69, 0.69),
tau = c(0, 0, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

no_nominal_35 <- replicate(1000,
nominal_simulation(

Icat = 3, Jcat = 5,
alpha = c(-1.39, -0.41, 0.41, 1.39),
tau = c(0, 0, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE

) |>
bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

no_nominal_53 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 3,
alpha = c(-0.69, 0.69),
tau = c(0, 0, 0, 0, 0),
sample_size_vec = c(500, 1000, 2000)

),
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simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

no_nominal_55 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 5,
alpha = c(-1.39, -0.41, 0.41, 1.39),
tau = c(0, 0, 0, 0, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(no_nominal_33, "simulations/no_nominal_33.Rds")
saveRDS(no_nominal_35, "simulations/no_nominal_35.Rds")
saveRDS(no_nominal_53, "simulations/no_nominal_53.Rds")
saveRDS(no_nominal_55, "simulations/no_nominal_55.Rds")

Simulation code for weak association for a nominal variable.

set.seed(713)
# weak association
weak_nominal_33 <- replicate(1000, nominal_simulation(

Icat = 3, Jcat = 3,
alpha = c(-0.70, 0.70),
tau = c(0.25, -0.25, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(
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cols = c(model_free, model, model_poor),
names_to = c("type")

)

weak_nominal_35 <- replicate(1000, nominal_simulation(
Icat = 3, Jcat = 5,
alpha = c(-1.40, -0.41, 0.41, 1.40),
tau = c(0.25, -0.25, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

weak_nominal_53 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 3,
alpha = c(-0.72, 0.72),
tau = c(0.55, 0.25, -0.25, -0.55, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

weak_nominal_55 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 5,
alpha = c(-1.43, -0.42, 0.42, 1.43),
tau = c(0.55, 0.25, -0.25, -0.55, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
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pivot_longer(
cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(weak_nominal_33, "simulations/weak_nominal_33.Rds")
saveRDS(weak_nominal_35, "simulations/weak_nominal_35.Rds")
saveRDS(weak_nominal_53, "simulations/weak_nominal_53.Rds")
saveRDS(weak_nominal_55, "simulations/weak_nominal_55.Rds")

Simulation code for moderate association for a nominal variable.

set.seed(713)
# moderate association
moderate_nominal_33 <- replicate(1000, nominal_simulation(

Icat = 3, Jcat = 3,
alpha = c(-0.77, 0.77),
tau = c(0.85, -0.85, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

moderate_nominal_35 <- replicate(1000, nominal_simulation(
Icat = 3, Jcat = 5,
alpha = c(-1.53, -0.45, 0.45, 1.53),
tau = c(0.85, -0.85, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)
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moderate_nominal_53 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 3,
alpha = c(-0.82, 0.82),
tau = c(1.1, 0.85, -0.85, -1.1, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

moderate_nominal_55 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 5,
alpha = c(-1.61, -0.48, 0.48, 1.61),
tau = c(1.1, 0.85, -0.85, -1.10, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(moderate_nominal_33, "simulations/moderate_nominal_33.Rds")
saveRDS(moderate_nominal_35, "simulations/moderate_nominal_35.Rds")
saveRDS(moderate_nominal_53, "simulations/moderate_nominal_53.Rds")
saveRDS(moderate_nominal_55, "simulations/moderate_nominal_55.Rds")

Simulation code for strong association for a nominal variable.

set.seed(713)
strong_nominal_33 <- replicate(1000, nominal_simulation(

Icat = 3, Jcat = 3,
alpha = c(-0.91, 0.91),
tau = c(1.4, -1.4, 0),
sample_size_vec = c(500, 1000, 2000)
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),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

strong_nominal_35 <- replicate(1000, nominal_simulation(
Icat = 3, Jcat = 5,
alpha = c(-1.76, -0.53, 0.53, 1.76),
tau = c(1.4, -1.4, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

strong_nominal_53 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 3,
alpha = c(-1.02, 1.02),
tau = c(1.7, 1.4, -1.4, -1.7, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

strong_nominal_55 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 5,
alpha = c(-1.93, -0.61, 0.61, 1.93),
tau = c(1.7, 1.4, -1.4, -1.7, 0),
sample_size_vec = c(500, 1000, 2000)
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),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(strong_nominal_33, "simulations/strong_nominal_33.Rds")
saveRDS(strong_nominal_35, "simulations/strong_nominal_35.Rds")
saveRDS(strong_nominal_53, "simulations/strong_nominal_53.Rds")
saveRDS(strong_nominal_55, "simulations/strong_nominal_55.Rds")

Simulation code for very strong association for a nominal variable.

# very strong association
set.seed(713)
very_nominal_33 <- replicate(1000, nominal_simulation(

Icat = 3, Jcat = 3,
alpha = c(-1.11, 1.11),
tau = c(2, -2, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

very_nominal_35 <- replicate(1000, nominal_simulation(
Icat = 3, Jcat = 5,
alpha = c(-2.10, -0.66, 0.66, 2.10),
tau = c(2, -2, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
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pivot_longer(
cols = c(model_free, model, model_poor),
names_to = c("type")

)

very_nominal_53 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 3,
alpha = c(-1.31, 1.31),
tau = c(2.3, 2, -2, -2.3, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

very_nominal_55 <- replicate(1000, nominal_simulation(
Icat = 5, Jcat = 5,
alpha = c(-2.37, -0.79, 0.79, 2.37),
tau = c(2.3, 2, -2, -2.3, 0),
sample_size_vec = c(500, 1000, 2000)

),
simplify = FALSE
) |>

bind_rows() |>
pivot_longer(

cols = c(model_free, model, model_poor),
names_to = c("type")

)

saveRDS(very_nominal_33, "simulations/very_nominal_33.Rds")
saveRDS(very_nominal_35, "simulations/very_nominal_35.Rds")
saveRDS(very_nominal_53, "simulations/very_nominal_53.Rds")
saveRDS(very_nominal_55, "simulations/very_nominal_55.Rds")

A.4.2 Code to generate the boxplots

Code for no association boxplots.
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# New facet label names
model.labs <- c("Model (Good)", "Model Free", "Model (Poor)")
names(model.labs) <- c("model", "model_free", "model_poor")

no_assoc_33 <- readRDS("simulations/no_assoc_33.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

no_assoc_35 <- readRDS("simulations/no_assoc_35.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

no_assoc_53 <- readRDS("simulations/no_assoc_53.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

no_assoc_55 <- readRDS("simulations/no_assoc_55.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

no_assoc_33_p <- ggplot(no_assoc_33, aes(x = value, color = size)) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(0, 0.03)

no_assoc_35_p <- ggplot(no_assoc_35, aes(x = value, color = size)) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(0, 0.04)

no_assoc_53_p <- ggplot(no_assoc_53, aes(x = value, color = size)) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(0, 0.04)

no_assoc_55_p <- ggplot(no_assoc_55, aes(x = value, color = size)) +
geom_boxplot() +
coord_flip() +
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facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(0, 0.04)

Code for weak association boxplots.

weak_assoc_33 <- readRDS("simulations/weak_assoc_33.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

weak_assoc_35 <- readRDS("simulations/weak_assoc_35.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

weak_assoc_53 <- readRDS("simulations/weak_assoc_53.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

weak_assoc_55 <- readRDS("simulations/weak_assoc_55.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

weak_assoc_33_p <- ggplot(
weak_assoc_33,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .075))

weak_assoc_35_p <- ggplot(
weak_assoc_35,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, 0.1))

weak_assoc_53_p <- ggplot(
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weak_assoc_53,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .15))

weak_assoc_55_p <- ggplot(
weak_assoc_55,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .15))

Code for moderate association boxplots.

moderate_assoc_33 <- readRDS("simulations/moderate_assoc_33.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

moderate_assoc_35 <- readRDS("simulations/moderate_assoc_35.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

moderate_assoc_53 <- readRDS("simulations/moderate_assoc_53.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

moderate_assoc_55 <- readRDS("simulations/moderate_assoc_55.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

moderate_assoc_33_p <- ggplot(
moderate_assoc_33,
aes(x = value, color = size)

) +
geom_boxplot() +
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coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .25))

moderate_assoc_35_p <- ggplot(
moderate_assoc_35,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .25))

moderate_assoc_53_p <- ggplot(
moderate_assoc_53,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .4))

moderate_assoc_55_p <- ggplot(
moderate_assoc_55,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .5))

Code for strong association boxplots.

strong_assoc_33 <- readRDS("simulations/strong_assoc_33.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

strong_assoc_35 <- readRDS("simulations/strong_assoc_35.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))
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strong_assoc_53 <- readRDS("simulations/strong_assoc_53.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

strong_assoc_55 <- readRDS("simulations/strong_assoc_55.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

strong_assoc_33_p <- ggplot(
strong_assoc_33,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .5))

strong_assoc_35_p <- ggplot(
strong_assoc_35,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .5))

strong_assoc_53_p <- ggplot(
strong_assoc_53,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .7))

strong_assoc_55_p <- ggplot(
strong_assoc_55,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
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facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .7))

Code for very strong association boxplots.

very_assoc_33 <- readRDS("simulations/very_assoc_33.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

very_assoc_35 <- readRDS("simulations/very_assoc_35.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

very_assoc_53 <- readRDS("simulations/very_assoc_53.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

very_assoc_55 <- readRDS("simulations/very_assoc_55.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

very_assoc_33_p <- ggplot(
very_assoc_33,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .6))

very_assoc_35_p <- ggplot(
very_assoc_35,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .6))

very_assoc_53_p <- ggplot(
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very_assoc_53,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .8))

very_assoc_55_p <- ggplot(
very_assoc_55,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .8))

Code for nonmonotone nonlinear association boxplots.

# New facet label names
nonmonotone.labs <- c(

"Model (Good)", "Model Free",
"Model (Linear)", "Model (No)"

)
names(nonmonotone.labs) <- c(

"model", "model_free",
"model_linear", "model_no"

)
nonmonotone_33 <- readRDS("simulations/nonmonotone_33.Rds") |>

mutate(across(type, factor,
levels = c(

"model_free", "model",
"model_linear", "model_no"

)
))

nonmonotone_35 <- readRDS("simulations/nonmonotone_35.Rds") |>
mutate(across(type, factor,

levels = c(
"model_free", "model",
"model_linear", "model_no"

)
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))
nonmonotone_53 <- readRDS("simulations/nonmonotone_53.Rds") |>

mutate(across(type, factor,
levels = c(

"model_free", "model",
"model_linear", "model_no"

)
))

nonmonotone_55 <- readRDS("simulations/nonmonotone_55.Rds") |>
mutate(across(type, factor,

levels = c(
"model_free", "model",
"model_linear", "model_no"

)
))

nonmonotone_33_p <- ggplot(
nonmonotone_33,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = nonmonotone.labs)) +
xlim(c(0, .5))

nonmonotone_35_p <- ggplot(
nonmonotone_35,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = nonmonotone.labs)) +
xlim(c(0, .5))

nonmonotone_53_p <- ggplot(
nonmonotone_53,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = nonmonotone.labs)) +
xlim(c(0, .8))
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nonmonotone_55_p <- ggplot(
nonmonotone_55,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = nonmonotone.labs)) +
xlim(c(0, 1))

Code for boxplots of no association for a nominal variable.

no_nominal_33 <- readRDS("simulations/no_nominal_33.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

no_nominal_35 <- readRDS("simulations/no_nominal_35.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

no_nominal_53 <- readRDS("simulations/no_nominal_53.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

no_nominal_55 <- readRDS("simulations/no_nominal_55.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

no_nominal_33_p <- ggplot(
no_nominal_33,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .05))

no_nominal_53_p <- ggplot(
no_nominal_53,
aes(x = value, color = size)

) +
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geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .05))

no_nominal_35_p <- ggplot(
no_nominal_35,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .05))

no_nominal_55_p <- ggplot(
no_nominal_55,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .06))

Code for boxplots of weak association for a nominal variable.

Code for boxplots of moderate association for a nominal variable.

moderate_nominal_33 <- readRDS(
"simulations/moderate_nominal_33.Rds"

) |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

moderate_nominal_35 <- readRDS(
"simulations/moderate_nominal_35.Rds"

) |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

moderate_nominal_53 <- readRDS(
"simulations/moderate_nominal_53.Rds"
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) |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

moderate_nominal_55 <- readRDS(
"simulations/moderate_nominal_55.Rds"

) |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

moderate_nominal_33_p <- ggplot(
moderate_nominal_33,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .3))

moderate_nominal_35_p <- ggplot(
moderate_nominal_35,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .3))

moderate_nominal_53_p <- ggplot(
moderate_nominal_53,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .4))

moderate_nominal_55_p <- ggplot(
moderate_nominal_55,
aes(x = value, color = size)

) +
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geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .4))

Code for boxplots of strong association for a nominal variable.

Code for boxplots of very strong association for a nominal variable.

very_nominal_33 <- readRDS("simulations/very_nominal_33.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

very_nominal_35 <- readRDS("simulations/very_nominal_35.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

very_nominal_53 <- readRDS("simulations/very_nominal_53.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

very_nominal_55 <- readRDS("simulations/very_nominal_55.Rds") |>
mutate(across(type, factor,

levels = c("model_free", "model", "model_poor")
))

very_nominal_33_p <- ggplot(
very_nominal_33,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .6))

very_nominal_35_p <- ggplot(
very_nominal_35,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
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facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .6))

very_nominal_53_p <- ggplot(
very_nominal_53,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .6))

very_nominal_55_p <- ggplot(
very_nominal_55,
aes(x = value, color = size)

) +
geom_boxplot() +
coord_flip() +
facet_wrap(~type, labeller = labeller(type = model.labs)) +
xlim(c(0, .6))

A.4.3 Code for real data

Code to calculate the CCRAM for Table 5.5.

ideology <- read.csv("data/polviews.csv") |>
pivot_longer(cols = c(y1, y2, y3, y4, y5), names_to = "ideology") |>
mutate(ideology = as.numeric(str_extract(ideology, "[0-9]")))

ideology_observations <- countsToCases(ideology, countcol = "value")
female <- ideology_observations |>

dplyr::filter(sex == 1)
male <- ideology_observations |>

dplyr::filter(sex == 2)

getBECCR_2(var_index = 3, data = ideology_observations)
getBECCR_2(var_index = 3, data = ideology_observations) /

(12 * getVariance(var_index = 3, data = ideology_observations))
# 0.4920222

sex_only <- select(ideology_observations, -party)
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party_only <- select(ideology_observations, -sex)

getBECCR_2(var_index = 2, data = sex_only)
getBECCR_2(var_index = 2, data = sex_only) /

(12 * getVariance(var_index = 2, data = sex_only))
getBECCR_2(var_index = 2, data = party_only) /

(12 * getVariance(var_index = 2, data = party_only))

# confidence intervals
library(boot)
get_beccr <- function(data, indices, var_index) {

d <- data[indices, ]
getBECCR_2(var_index = var_index, data = d)

}

# CI for everything, ideology as response
boot_total_ideology <- boot(

ideology_observations,
var_index = 3,
R = 1000,
statistic = get_beccr

)
# CI for everything, party as response
boot_total_party <- boot(

ideology_observations,
var_index = 2,
R = 1000,
statistic = get_beccr

)

saveRDS(boot_total_ideology, "data/boot/boot_total_ideology.Rds")
saveRDS(boot_total_party, "data/boot/boot_total_party.Rds")

# CI for sex, ideology as response
boot_sex_ideology <- boot(

sex_only,
var_index = 2,
R = 1000,
statistic = get_beccr

)
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# CI for party, party as response
boot_party_ideology <- boot(

party_only,
var_index = 2,
R = 1000,
statistic = get_beccr

)

saveRDS(boot_sex_ideology, "data/boot/boot_sex_ideology.Rds")
saveRDS(boot_party_ideology, "data/boot/boot_party_ideology.Rds")

boot_total_ideology <- readRDS("data/boot/boot_total_ideology.Rds")
boot_total_party <- readRDS("data/boot/boot_total_party.Rds")
boot_sex_ideology <- readRDS("data/boot/boot_sex_ideology.Rds")
boot_party_ideology <- readRDS("data/boot/boot_party_ideology.Rds")

boot_females_ideology <- readRDS("data/boot/boot_females_ideology.Rds")
boot_females_party <- readRDS("data/boot/boot_females_party.Rds")
boot_males_ideology <- readRDS("data/boot/boot_males_ideology.Rds")
boot_males_party <- readRDS("data/boot/boot_males_party.Rds")
boot::boot.ci(boot_total_ideology, type = "bca")
boot::boot.ci(boot_total_party, type = "bca")

boot::boot.ci(boot_sex_ideology, type = "bca")
boot::boot.ci(boot_party_ideology, type = "bca")

boot::boot.ci(boot_females_ideology, type = "bca")
boot::boot.ci(boot_females_party, type = "bca")
boot::boot.ci(boot_males_ideology, type = "bca")
boot::boot.ci(boot_males_party, type = "bca")

Code for Figure 5.15.

set.seed(713)
prediction_data <- expand.grid(

sex = unique(ideology_observations$sex),
party =
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unique(ideology_observations$party)
)
for (n in 1:1000) {

resample_ideology <- resample(ideology_observations,
nrow(ideology_observations),
replace = TRUE

)[, 1:3]
resampled_prediction <- prediction_data |>

rowwise() |>
mutate(prediction_index = getPrediction(

var_index = 3,
idx_vec = c(sex, party),
data = resample_ideology

))
prediction_data <- data.frame(prediction_data,

name =
resampled_prediction$prediction_index

)
}
saveRDS(prediction_data, "simulations/prediction_data.Rds")

prediction_data <- readRDS("simulations/prediction_data.Rds")

long_form <- prediction_data |>
pivot_longer(cols = "name":"name.999", names_to = "sample")

counts <- long_form |>
dplyr::count(sex, party, value)

combinations <- expand.grid(
sex =

unique(ideology_observations$sex),
party =

unique(ideology_observations$party),
ideology =

unique(ideology_observations$ideology)
)

full_data <- left_join(combinations, counts,
by = c(

"sex" = "sex",
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"party" = "party",
"ideology" = "value"

)
) |>

replace_na(list(n = 0))

full_data <- full_data |>
mutate(

sex_name = ifelse(sex == 1, "F", "M"),
party_name = ifelse(party == 1, "D", "R"),
ideology_name = factor(case_when(

ideology == 1 ~ "Very Liberal",
ideology == 2 ~ "Slightly Liberal",
ideology == 3 ~ "Moderate",
ideology == 4 ~ "Slightly Conservative",
ideology == 5 ~ "Very Conservative"

), levels = c(
"Very Liberal", "Slightly Liberal",
"Moderate", "Slightly Conservative",
"Very Conservative"

))
)

full_data$combination_sp <- paste(
full_data$sex_name,
full_data$party_name

)
full_data$combination_ps <- paste(

full_data$party_name,
full_data$sex_name

)

ggplot(full_data, aes(x = combination_ps, y = ideology_name)) +
geom_point(aes(

size =
ifelse(n == 0, NA, n * 100), color = sex

),
shape = 21, colour = "black",
fill = "white", stroke = .5
) +
scale_size_continuous(range = c(1, 20)) +
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geom_point(data = full_data, aes(
x = combination_ps,
y = ideology_name,
size =

ifelse(n == 0 | n <= 500,
NA, .1

)
)) +
# geom_point(full_data, aes(x = combination_ps, y = ideology_name)) +
geom_text(aes(label = ifelse(n == 0, "", n)),

vjust = -1.2, size = 2
) +
theme(

legend.position = "none",
text = element_text(size = 13),
axis.text.y = element_text(

angle = 45, vjust = 0.5,
hjust = 1, size = 8

),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black")

) +
labs(

x = "Combination of Party and Sex",
y = "Political Ideology"

)

Code for model output summary.

table_ideology <- read.csv("data/polviews.csv") |>
mutate(sex = as.factor(sex), party = as.factor(party))

logit.real <- VGAM::vglm(cbind(y1, y2, y3, y4, y5) ~ sex * party,
data = table_ideology,
family = cumulative(parallel = TRUE)

)
summary(logit.real)
# logit.polr <- polr(as.factor(ideology) ~ sex * party,
# method="logistic",data = ideology_observations)
# brant::brant(logit.polr)
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Code for model-based rescaled measures.

table_ideology <- read.csv("data/polviews.csv")
logit.sex <- VGAM::vglm(cbind(y1, y2, y3, y4, y5) ~ sex,

data = table_ideology,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)
summary(logit.sex)
# check proportional odds
sex_model <- polr(as.factor(ideology) ~ sex,

method = "logistic",
data = ideology_observations

)
brant::brant(sex_model)
# gof test
1 - pchisq(413.054, df = 11)

sex_cond <- cbind(predict(logit.sex,
newdata =

data.frame(sex = 1:2), type = "response"
))
sex_px <- getPMF(var_index = 1, data = sex_only)
sex_model_tab <- sex_cond * sex_px
# scaled model_BECCR
getBECCR(var_index = 2, data = sex_model_tab) /

(12 * getVariance(var_index = 2, data = sex_model_tab))

# model for party only
logit.party <- VGAM::vglm(cbind(y1, y2, y3, y4, y5) ~ party,

data = table_ideology,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)
summary(logit.party)

169



# check proportional odds
party_model <- polr(as.factor(ideology) ~ party,

method = "logistic",
data = ideology_observations

)
brant::brant(party_model)
# gof test
1 - pchisq(9.9069, df = 11)

party_cond <- cbind(predict(logit.party,
newdata = data.frame(party = 1:2),
type = "response"

))
party_px <- getPMF_2(var_index = 2, data = ideology_observations)
party_model_tab <- party_cond * party_px
getBECCR(var_index = 2, data = party_model_tab) /

(12 * getVariance(var_index = 2, data = party_model_tab))
# 0.488223

# model with both

logit.both <- VGAM::vglm(cbind(y1, y2, y3, y4, y5) ~ party + sex,
data = table_ideology,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)
summary(logit.both)
# check proportional odds
both_model <- polr(as.factor(ideology) ~ party + sex,

method = "logistic",
data = ideology_observations

)
brant::brant(both_model)
# gof test
1 - pchisq(9.8072, df = 10)

# first find the empirical probability of sex and party
sex_given_party <- getConditionalPMFwo(var_index = 1, data = party_sex)
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party_pmf <- tibble(
party_pmf =

getPMF_2(
var_index = 2,
data =

ideology_observations
)

) |>
cbind(party = 1:2)

# pmf of party and sex
pmf_party_sex <- left_join(sex_given_party,

party_pmf,
by = "party"

) |>
mutate(joint_party_sex = freq_cond * party_pmf) |>
select(sex, party, joint_party_sex)

# get the conditional pmf of ideology given sex and party
ideology_given_both <- getConditionalPMFwo(

var_index = 3,
data =

ideology_observations
)
# model-based
newdata <- expand.grid(sex = 1:2, party = 1:2)

ideology_given_both <- data.frame(
sex = c(1, 2, 1, 2),
party = c(1, 1, 2, 2),
predict(logit.both,

newdata = newdata,
type = "response"

)
) |>

pivot_longer(
cols = y1:y5, names_to = "ideology",
values_to = "freq_cond",
names_transform =

list(ideology = readr::parse_number)
) |>
left_join(pmf_party_sex, by = c("sex", "party")) |>
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mutate(joint_pmf = freq_cond * joint_party_sex) |>
select(sex, party, ideology, joint_pmf, freq_cond)

total_possibilities <- expand.grid(
sex = 1:Icat, party = 1:Kcat,
ideology = 1:Jcat

) |>
left_join(ideology_given_both) |>
mutate(

joint_pmf = ifelse(is.na(joint_pmf), 0, joint_pmf),
freq_cond = ifelse(is.na(freq_cond), 0, freq_cond)

)

combinations <- expand.grid(
sex = 1:Icat, party = 1:Kcat,
ideology = 1:Jcat

)

# get the scores
ideology_pmf_1 <- total_possibilities |>

group_by(ideology) |>
summarize(pmf = sum(joint_pmf)) |>
select(pmf)

ideology_cdf <- mutate(ideology_pmf_1, cdf = cumsum(pmf))
ideology_cdf <- append(ideology_cdf$cdf, value = 0, after = 0)
ideology_scores <- getScores(data = ideology_cdf)
ideology_scores <- data.frame(

ideology = 1:5,
scores = ideology_scores

)
ideology_pmf <- ideology_pmf_1$pmf
# get the variance
var <- 0
for (i in 1:5) {

var <- var + ideology_cdf[i] *
ideology_cdf[i + 1] *
ideology_pmf[i] / 4

}

# getting the marginal probability without ideology
# getPMFwo(var_index = 3, data = ideology_observations)
PMFwo <- total_possibilities |>
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group_by(sex, party) |>
mutate(pmfWO = sum(joint_pmf)) |>
distinct(pmfWO)

total_possibilities <- left_join(total_possibilities,
ideology_scores,
by = "ideology"

) |>
left_join(PMFwo)

measure_both <- total_possibilities |>
group_by(sex, party) |>
mutate(temp1 = freq_cond * scores) |>
summarize(temp2 = ((sum(temp1) - .5)ˆ2 * pmfWO)) |>
distinct()

# model-based measure
12 * sum(measure_both$temp2) / (12 * var)
# 0.4884015 model-based

logit.interaction <- VGAM::vglm(
cbind(y1, y2, y3, y4, y5) ~ party * sex,
data = table_ideology,
family = cumulative(

link = "logitlink",
parallel = TRUE,
reverse = FALSE

)
)
summary(logit.interaction)
# gof
1 - pchisq(8.4528, df = 9)
# brant test
interaction_model <- polr(as.factor(ideology) ~ party * sex,

method = "logistic",
data = ideology_observations

)
brant::brant(interaction_model)

# find predicted
ideology_given_both2 <- data.frame(
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sex = c(1, 2, 1, 2),
party = c(1, 1, 2, 2),
predict(logit.interaction,

newdata = newdata,
type = "response"

)
) |>

pivot_longer(
cols = y1:y5, names_to = "ideology",
values_to = "freq_cond",
names_transform =

list(ideology = readr::parse_number)
) |>
left_join(pmf_party_sex, by = c("sex", "party")) |>
mutate(joint_pmf = freq_cond * joint_party_sex) |>
select(sex, party, ideology, joint_pmf, freq_cond)

total_possibilities2 <- expand.grid(
sex = 1:Icat,
party = 1:Kcat,
ideology = 1:Jcat

) |>
left_join(ideology_given_both2) |>
mutate(

joint_pmf = ifelse(is.na(joint_pmf), 0, joint_pmf),
freq_cond = ifelse(is.na(freq_cond), 0, freq_cond)

)

# get the scores
ideology_pmf2 <- total_possibilities2 |>

group_by(ideology) |>
summarize(pmf = sum(joint_pmf)) |>
select(pmf)

ideology_cdf2 <- mutate(ideology_pmf2, cdf = cumsum(pmf))
ideology_cdf2 <- append(ideology_cdf2$cdf, value = 0, after = 0)
ideology_scores2 <- getScores(data = ideology_cdf2)
ideology_scores2 <- data.frame(

ideology = 1:5,
scores = ideology_scores2

)
ideology_pmf2 <- ideology_pmf2$pmf
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# get the variance
var <- 0
for (i in 1:5) {

var <- var + ideology_cdf2[i] *
ideology_cdf2[i + 1] *
ideology_pmf2[i] / 4

}

# getting the marginal probability without ideology
# getPMFwo(var_index = 3, data = ideology_observations)
PMFwo2 <- total_possibilities2 |>

group_by(sex, party) |>
mutate(pmfWO = sum(joint_pmf)) |>
distinct(pmfWO)

total_possibilities2 <- left_join(total_possibilities2,
ideology_scores2,
by = "ideology"

) |>
left_join(PMFwo2)

measure2 <- total_possibilities2 |>
group_by(sex, party) |>
mutate(temp1 = freq_cond * scores) |>
summarize(temp2 = ((sum(temp1) - .5)ˆ2 * pmfWO)) |>
distinct()

# model-based measure
12 * sum(measure2$temp2) / (12 * var)
# 0.4894932 with interaction
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Appendix B Simulation Results

This appendix includes code for the simulation study and real world application as

well as the results for all the simulations. This appendix includes the boxplots of

simulation results.

B.1 Boxplots for no association and linear association
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Figure B.1: No Association. Boxplots of ρ̂2
X→Y for 3 × 3 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.2: No Association. Boxplots of ρ̂2
X→Y for 3 × 5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.3: No Association. Boxplots of ρ̂2
X→Y for 5 × 3 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.4: No Association. Boxplots of ρ̂2
X→Y for 5 × 5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.5: Weak Association. Boxplots of ρ̂2
X→Y for 3 × 3 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.6: Weak Association. Boxplots of ρ̂2
X→Y for 3 × 5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.7: Weak Association. Boxplots of ρ̂2
X→Y for 5 × 3 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.8: Weak Association. Boxplots of ρ̂2
X→Y for 5 × 5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.9: Moderate Association. Boxplots of ρ̂2
X→Y for 3 × 3 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.10: Moderate Association. Boxplots of ρ̂2
X→Y for 3×5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.11: Moderate Association. Boxplots of ρ̂2
X→Y for 5×3 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.12: Moderate Association. Boxplots of ρ̂2
X→Y for 5×5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.13: Strong Association. Boxplots of ρ̂2
X→Y for 3 × 3 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.14: (Strong Association) Boxplots of ρ̂2
X→Y for 3 × 5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.15: Strong Association. Boxplots of ρ̂2
X→Y for 5 × 3 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.16: Strong Association. Boxplots of ρ̂2
X→Y for 5 × 5 table. Data were

simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.17: Very Strong Association. Boxplots of ρ̂2
X→Y for 3 × 3 table. Data

were simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.18: Very Strong Association. Boxplots of ρ̂2
X→Y for 5 × 3 table. Data

were simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.19: Very Strong Association. Boxplots of ρ̂2
X→Y for 3 × 5 table. Data

were simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.20: Very Strong Association. Boxplots of ρ̂2
X→Y for 5 × 5 table. Data

were simulated from cumulative logit model with ordinal explanatory variable X.

B.2 Boxplots for nonmonotone nonlinear association
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Figure B.21: Nonmonotone Association. Boxplots of ρ̂2
X→Y for 3×3 tables. Data

were simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.22: Nonmonotone Association. Boxplots of ρ̂2
X→Y for 3×5 tables. Data

were simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.23: Nonmonotone Association. Boxplots of ρ̂2
X→Y for 5×3 tables. Data

were simulated from cumulative logit model with ordinal explanatory variable X.
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Figure B.24: Nonmonotone Association. Boxplots of ρ̂2
X→Y for 5×5 tables. Data

were simulated from cumulative logit model with ordinal explanatory variable X.

B.3 Boxplots for no association with a nominal variable
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Figure B.25: No Association. Boxplots of ρ̂2
X→Y for 3 × 3 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.

189



Model Free Model (Good) Model (Poor)

−0.2 0.0 0.2 −0.2 0.0 0.2 −0.2 0.0 0.2

0.00

0.01

0.02

0.03

0.04

0.05
va

lu
e

size

500

1000

2000

Figure B.26: No Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.27: No Association. Boxplots of ρ̂2
X→Y for 5 × 3 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.28: No Association. Boxplots of ρ̂2
X→Y for 5 × 5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.29: Weak Association. Boxplots of ρ̂2
X→Y for 3 × 3 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.

191



Model Free Model (Good) Model (Poor)

−0.2 0.0 0.2 −0.2 0.0 0.2 −0.2 0.0 0.2

0.000

0.025

0.050

0.075

0.100
va

lu
e

size

500

1000

2000

Figure B.30: Weak Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.31: Weak Association. Boxplots of ρ̂2
X→Y for 5 × 3 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.32: Weak Association. Boxplots of ρ̂2
X→Y for 5 × 5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.33: Moderate Association. Boxplots of ρ̂2
X→Y for 3 × 3 tables. Data

were simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.34: Moderate Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data

were simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.35: Moderate Association. Boxplots of ρ̂2
X→Y for 5 × 3 tables. Data

were simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.36: Moderate Association. Boxplots of ρ̂2
X→Y for 5 × 5 tables. Data

were simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.37: Strong Association. Boxplots of ρ̂2
X→Y for 3 × 3 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.38: Strong Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.39: Strong Association. Boxplots of ρ̂2
X→Y for 5 × 3 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.40: Strong Association. Boxplots of ρ̂2
X→Y for 5 × 5 tables. Data were

simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.41: Very Strong Association. Boxplots of ρ̂2
X→Y for 3 × 3 tables. Data

were simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.42: Very Strong Association. Boxplots of ρ̂2
X→Y for 3 × 5 tables. Data

were simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.43: Very Strong Association. Boxplots of ρ̂2
X→Y for 5 × 3 tables. Data

were simulated from cumulative logit model with nominal explanatory variable X.
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Figure B.44: Very Strong Association. Boxplots of ρ̂2
X→Y for 5 × 5 tables. Data

were simulated from cumulative logit model with nominal explanatory variable X.
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Corrections

When originally submitted, this honors thesis contained some errors which have been

corrected in the current version. Here is a list of the errors that were corrected.

Abstract, pg i.

“Categorical data analysis with ordinal responses is important in fields such as the

social sciences and taking into consideration the intrinsic ordering of ordinal variables

can give more powerful inferences” has been changed to “Categorical data analysis

with ordinal responses is important in fields such as the social sciences because when

we take into consideration the intrinsic ordering of ordinal variables, we can often

obtain more powerful inferences”

Page 2

The phrase “,hence the lack of modeling required” was removed.

Page 6

The sentence that included “· · · underlying variables and if we look at the right

· · ·” has been broken up into two sentences, “· · · underlying variables. If we look at

the right · · ·”

Page 9

“This is why copulas are so exciting” has been changed to “This flexibility is why

copulas are so attractive.”

Page 10

Fixed definition of subcopula and copula. Before they were:
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Definition 11. A 2-dimensional subcopula (2-subcopula) is a function CS : D1 ×

D2 → I where {0, 1} ⊆ Di ⊆ I for i = 1, 2 with the following characteristics:

• Grounded, i.e., : CS(u, 0) = 0 = CS(0, v)

• CS(u, 1) = 1 = CS(1, v) ∀u ∈ D1, ∀v ∈ D2

• 2-increasing, i.e., : CS(u2, v2) − CS(u1, v2) − CS(u2, v1) + CS(u1, v1) ≥ 0 where

u1 ≤ u2 and v1 ≤ v2.

Definition 12. A 2-dimensional copula (2-copula) is a function C : I × I → I with

the following characteristics:

• Grounded, i.e., : C(u, 0) = 0 = C(0, v)

• C(u, 1) = 1 = C(1, v) ∀u ∈ D1, ∀v ∈ D2

• 2-increasing, i.e., : C(u2, v2)−C(u1, v2)−C(u2, v1)+C(u1, v1) ≥ 0 where u1 ≤ u2

and v1 ≤ v2.

and after:

Definition 13. A 2-dimensional subcopula (2-subcopula) is a function CS : D1 ×

D2 → I where {0, 1} ⊆ Di ⊆ I for i = 1, 2 with the following characteristics:

• Grounded, i.e., : CS(u, 0) = 0 = CS(0, v), ∀u ∈ D1, ∀v ∈ D2

• CS(u, 1) = u, ∀u ∈ D1 and CS(1, v) = v, ∀v ∈ D2

• 2-increasing, i.e., : CS(u2, v2) − CS(u1, v2) − CS(u2, v1) + CS(u1, v1) ≥ 0 where

u1 ≤ u2 and v1 ≤ v2.

Definition 14. A 2-dimensional copula (2-copula) is a function C : D1 × D2 → I

where D1 = I = D2 with the following characteristics:
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• Grounded, i.e., : C(u, 0) = 0 = C(0, v), ∀u ∈ D1, ∀v ∈ D2

• C(u, 1) = u, ∀u ∈ D1 and C(1, v) = v, ∀v ∈ D2

• 2-increasing, i.e., : C(u2, v2)−C(u1, v2)−C(u2, v1)+C(u1, v1) ≥ 0 where u1 ≤ u2

and v1 ≤ v2.

Page 17

“The wireframe and contour plots of W and M are demonstrated in · · ·” has been

changed to “The wireframe and contour plots of W and M are displayed in · · ·”

Page 28

Moved paragraph beginning with “One may interpret · · ·” directly under Defini-

tion 5 (Spearman’s Rho).

Page 30

Added “Hofert, Kojadinovic, Martin, & Yan (2018) goes more in depth for those

that are interested in the various estimation techniques.” after the sentence, “We will

briefly introduce some methods below, but won’t go into too much detail.”

Page 39

Added “In the previous example, Kendall’s tau and Spearman’s rho now both

rely on p and q which are the marginal probabilities of P (X = 0) and P (Y = 0)

respectively” to better explain the previous example.

Page 45

The sentence with the phrase “they used a certain kind of copula called the

checkerboard copula” was changed to “they used a copula called the checkerboard

copula.”

Page 53

The phrase “see Appendix of · · ·” has been changed to “see the Appendix of · · ·”

Page 70
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The sentence “For magnitude of association, we considered no association, weak,

moderate, strong, very strong association” was changed to “For magnitude of associ-

ation, we considered the levels of no association, weak, moderate, strong, very strong

association.”

Additionally, 45 grammatical, typography, and formatting changes were corrected

in various places in this thesis. Figure captions were edited formatting wise in ap-

proximately 5 places. Notation for standard Uniform distributions were changed in

approximately 5 places.
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