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Abstract

A common interest in many clinical trials or medical studies involve examining the relation-
ship between longitudinal data and survival data. In this paper, we explore various ways to
jointly model longitudinal and survival data in order to account for missingness, measurement,
errors and potential dependencies between the two types of data. Three approaches for inference
in joint modeling are discussed: a two-stage approach, likelihood-based methods, and Bayesian
methods. We then apply these approaches to an HIV/AIDS study, comparing results and em-
phasizing the importance of careful consideration in joint modeling methodologies due to its
complexity and various concerns.



1 Introduction

We often learn about longitudinal and survival analyses in separated settings. The former interested
in the data being measured over time and the latter focusing on a time to an event outcome. However,
in many clinical studies, we might have data that combines time-to-event data and longitudinal data
and instances where longitudinal data such as immune response to a treatment, tumor cell count, or
blood pressure could be important predictors of a time-to-event like survival or relapse. Consider the
following Figure 1 that shows 100 sampled patients from an HIV/AIDS study done by [1] (we will
use this dataset in the Application section as well) that shows CD4 cell counts repeatedly measured
over time. The time to event here could be time to dropout from study to time to death to name a
few.
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Figure 1: CD4 cell counts over time for two different antiretroviral drug treatments (ddC and ddI)

Popular models such as the linear mixed effects model for longitudinal data and the Cox propor-
tional hazards for survival data do not consider the potential associations between these two types
of data. When we perform separate analyses, it could potentially lead to inefficient or biased results
thus urging a consideration of jointly modeling longitudinal and survival data with the goal of ob-
taining valid and efficient inferences. A simulation example is described in [8] which demonstrated
that when the true hazard ratio is 0.67 and the longitudinal effect is "moderately correlated" with
the time to event, the treatment effect estimate was 0.76 with a standard error of 0.063 in a 400
subject study. Using a joint model however, the estimate was 0.67 with a standard error of 0.051.
Having less bias and greater efficiency has massive implications on design study. It can potentially
lead to higher power as well as smaller sample sizes when designing and conducting clinical trials
8]

Joint model of longitudinal and survival data are then a type of model that aims to coalesce these
two ideologies in order to better assess some treatment effect. It has been shown that joint models
provide more efficient estimates of treatment effects on the time to event, more efficient estimates
of treatment effects of the longitudinal covariates, and reduce bias in the estimates of the overall
treatment effect on survival and the longitudinal marker [8]. Ibrahim et al. [8] further suggest they
might also have the potential to allow for lower sample sizes with higher power compared to standard
designs based on survival data only .
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In this paper, we will describe three approaches for inference in joint modeling and discuss their
advantages and disadvantages. The first being a two-stage approach from the likes of [17], [13]
and its extensions. Then, we will examine likelihood methods which are based on the likelihood
for both the longitudinal and survival data and then briefly touch upon how these joint models
can be viewed through a Bayesian framework [20]. We will then list out some other remarks and
considerations related to this topic to acknowledge that this field is quite vast with its methodologies,
implementations, and various concerns. Finally, we apply the three approaches to the HIV/AIDS
study from [1| and compare results.

2 Setting

In this paper, we adopt the notation used in [20] and consider a standard formulation for the joint
model where the setup consists of a survival model with measurement errors in time-dependent
covariates, in which a linear mixed-effects model is often used to model time-dependent covariates
to address covariate measurement errors and a Cox proportional hazards model is used to model the
survival data.

Suppose we have a longitudinal study with n individuals. The question of interest pertains
to modeling the time to an event or survival time and we are considering incorporating a time-
varying covariate in the survival model. Let s; be the survival time for individual ¢ = 1,2,--- ,n.
Some individuals might not experience the event by the end of the study so their event times are
right censored. For simplicity, we assume that the censoring is random and non-informative. For
individual ¢ = 1,2,--- ,n, let ¢; be the censoring time and let §; = I(s; < ¢;) be the censoring
indicator. So ¢; = 0 if it is right censored and §; = 1 otherwise. The observed data are then
{(ti,0i),i=1,2,--- ,n} with ¢; = min(s;, ¢;).

We will also only consider one time-dependent covariate for simplicity. Let z;; be the observed

covariate value for an individual 7 at time w;;, subject to some measurement error, ¢ = 1,2,--- ,n
and j = 1,2,--- ,m;. We will also let the unobserved true covariates be z;“j and we denote z; =
{zi1, -+, Zim, }| and z*; = {5, ,z;kmi}T. And we let x; be the baseline covariates with the

assumption that x; has no measurement errors.
We will also work with the Cox model for survival data:

Ait) = Xo(t) exp(zf (t)p1 + %] Bp),i = 1,2, ,n (1)

where \;(t) is the hazard function, Ao(t) is the baseline hazard function and 8 = (81, 8%)7 are
the unknown true parameters. In addition, in a Cox model, exp(f) is the relative change in the
hazard at time ¢ for a one unit change in the corresponding covariate, much like the coefficients in a
logistic regression but instead of odds ratios, we are dealing with hazard ratios. If the estimate for
a parameter is less than 0 on the log hazards scale, we can intuitively imagine the risk of an event is
lower and thus the covariate is beneficial and vice versa. One can perform estimation and inference
on the f’s via a partial likelihood. T won’t get too much into detail here but see [4] for the seminal
paper.

In the Cox model, ideally, we have the value of z;(t) at each event time ¢ but in practice,
covariates are observed intermittently at various times, {u;j,j = 1,2,--- ,m;} for an individual i
with observation times possibly varying from individual to individual. This could lead to "missing"
covariates and measurement errors could occur as well which needs to be address [20].

search online failed to show any results so I'm not too confident on this last bit, but it is definitely something worthy
of pursuing



To address either issues, a standard approach is to model the time-dependent covariates. One
choice is a linear mixed effects model:

zi=Ua+Via;+e=2+¢€,i=1,---,n (2)

where U;, V; are design matrices, « is the vector of fixed-effects parameters, a; is a vector of
random effects, €; = (€1, - ,eimi)T is a vector of measurement errors, and the true unobserved
covariates are z} = U;a + Vja;.
We also will assume that
a; ~N(0,%), € ~ N(0,6%])

with a; and €; independent, ¥ is a covariance matrix, o2 is a parameter and I is the identity

matrix. We will also assume that covariate observations are truncated by event time so no covariates
are observed after the event occurs or after they drop out.

See that the survival mode in (1) and the longitudinal model in (2) are linked through the shared
random effects a;. This shared random effects induces the dependence between the longitudinal and
survival processes, thus pointing to the need of joint modeling.

3 Methods

3.1 Two-step Methods

There have been several two-stage methods proposed in the joint modeling literature. We first
introduce a basic two-step method and then provide some variations at the end.

1. Fit a linear mixed effects (LME) model to the longitudinal covariate data and estimate the
missing or mismeasured covariates based on the fitted model.

2. Fit the survival model separately, with the missing/ unobserved true covariate values substi-
tuted by their estimates from the first stage as if they were observed and proceed with typical
survival analysis methods.

Some of the earliest implementations of this idea are in from Self and Pawitan [14] and Tsiatis et
al. [17]. Self and Pawitan [14] proposed a two-stage method which uses the least-squares method to
fit individual longitudinal covariate trajectories and the following estimates were used to impute the
covariate values in the survival model and then inference was based on the partial likelihood. Tsiatis
et al. [17] approximated the hazard function and used that approximation in the partial likelihood
by replacing the true covariate z;(t) by the empirical Bayes estimate of the conditional expectation
BE(zr@#)|2H(t),t < si), where 27 (t) = {z;(u),u < t} is the covariate history up to time t. Other
approaches have been proposed in [17], [5], [3].

This approach has the advantage that it is simple and can be implemented using standard
statistical software. However, this approach could lead to biased inferences [20]| [21]. This is due
to a bevy of reasons. When we are estimating the longitudinal covariate model parameters, the
truncations from the events are not taken into consideration. In other words, the longitudinal
covariate trajectories of subjects who experience the event of interest may be different from those
who do not experience the event, which could potentially bias results based only on observed covariate
data. In addition, the uncertainty of the estimation in the first stage is not incorporated in the second
stage of the survival model estimation. This could lead to underestimation in standard errors of the
parameter estimates of the survival model.



Wu et al. [20] points out that the bias in the estimation of the longitudinal model parameters due
to not accounting for the informative truncations from the events may depend on the strength of the
association between the longitudinal process and the survival process. And the bias stemming from
ignoring the estimation uncertainty in Stage 1 may depend on the magnitude of measurement errors
in covariates. To address these issues, various modified two-stage methods have been proposed,
leading to a better less biased two-stage methods.

Since a lot of the bias from the naive two-stage method is caused by the fact that the covari-
ate trajectory is related to the length of follow up, the bias may be removed if we can recapture
these missing covariate measurements due to truncation by incorporating the event time informa-
tion. Albert and Shih [2| proposed the following method to recapture the missing measurements by
generating data from the conditional distribution of the covariate given the event time:

zz|32a /f zz|aza az|517 )daz (3)

where the covariate z; and event time s; are conditionally independent given the random effects
a; and @ is the vector of unknown parameters. The conditional density is then approximated using
a linear mixed effects model and they simulated missing data from f(z;|s;,0). After simulating the
missing data, the covariate model is then fitted to the "complete data".

3.2 Likelihood-based Methods

The likelihood approach is more widely used and produces valid and efficient inferences if the assumed
models are correct. This method is based on the both the likelihood for the longitudinal data and
survival data. Denote the observed data as {(t;, 9;, zi, x;),i = 1,2,--- ,n}. Let 8 = (B, a,0,%, Ao)
denote the set of unknown parameters in the models where Ag = {Ao(t;),7 = 1,2,--- ,n}. Once
again, we act under the assumption that censoring of the survival data and assessment process of
longitudinal measurements are non-informative. The overall likelihood for all the observed data is
given by:

0) = H/f(ti75i‘zf7)\Oaﬁ)f(zz"az‘,a,az)f(ai|2)dai (4)
=1

where
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We can either directly maximize the likelihood or use an Expectation-Maximization (EM) algo-
rithm. Since the integral is intractable, maximization is done using numerical integration techniques
such as the Gaussian Hermite quadrature methods that we’ve covered in class or Monte Carlo
methods.



3.2.1 Computation

The appeal with two-stage modeling was computation efficiency, especially when considering the
time period when people started to publish on joint modeling approaches back in the 90s. Now with
blazing fast computers and numerical integration techniques, we can simply ignore everything and
just approximate the likelihood right? Well as we saw in the midterm and in class, computational
complexity still is a challenge and issue that we must reconcile with. These methods can be com-
putationally intensive if the dimension of the unobservable random effects a; is not low so a few
approaches have been suggested.

Tsiatis and Davidian [18] proposed an approach called the conditional score method that makes
no distributional assumptions for the random effects a;. They treat a; as a nuisance parameter and
conditions on an appropriate sufficient statistic for a;. By conditioning on this sufficient statistic,
it removes the dependence of the conditional distribution on the random effects a;. They show it
is under certain regularity conditions consistent and asymptotically normal. In another approach,
Song et al. [15] relaxes the normality assumption of the vector of random effects by assuming they
merely follow some distribution in a class of smooth density family.

There have also been other approaches to improving computation speed such as using Laplace
approximations rather than Gaussian Hermite Quadratures, see [12]. They demonstrate that their
method requires a much smaller number of repeated measurements per individual to produce reliable
results compared to standard Laplace approximation.

3.3 Bayesian Methods

One could also consider a Bayesian joint model where the model parameters are assumed to follow
some prior distributions and inference is based on the posterior distribution given the observed data.
An advantage of Bayesian ideology is that one could incorporate informative priors based on similar
studies or from experts to gain additional information.

Let @ denote the collection of unknown parameters in the joint model and let f(€) denote the
prior distribution. Let D = {(¢;,0;, zi,@;),i = 1,2,--- ,n} denote the observed data. The joint

posterior distribution for all unknown parameters € and random effects a = {a;,i = 1,2,--- ,n} is
given by:
f(8,a|D) o Hf(ti75i|z;‘k»$i7 0)f(zilai, 0)f(ai|A)f(6]6) (5)
i=1

where 0 are the known hyperparameters. We can then perform Bayesian inference using Monte
Carlo samples drawn from the posterior distribution such as the Gibbs sampler. We can estimate
posterior means and variances of the parameters based on Monte Carlo samples and Bayesian infer-
ence can be conducted based on these estimated posterior means and variances.

4 Other considerations and remarks

In the previous section, we made some stringent assumptions regarding missingness being non-
informative or only considering right censoring with truncation and these assumptions usually do
not hold. Since the topic of joint modeling is quite extensive, I wanted to also quickly mention other
things that researchers have considered in this field.



4.1 Other Survival Models

In our literature review, we only looked at the Cox proportional hazards model but a joint model
can be based on other models used for survival data, such as the Accelerated Failure Time (AFT)
model where the AFT model can be written in a similar form as the Cox model:

nite) = hatt) [ t exp(— (u) ) exp(—=; ()9 (©)

where h;(t) is the hazard function of individual 7 at time ¢, ho(t) is the baseline hazard function
and z7(t) is the unobserved true covariate value at time ¢. One might be interested in the accelerated
failure time model as an alternative to the Cox model when the proportionality assumption does
not hold; however, Tseng et al. [16] shows that the AFT structure in the joint modeling scheme is
not the same as the Cox model.

4.2 Nonlinear Models

We also only considered a linear mixed effects model for the longitudinal data, but nonlinear mixed
effects model (NLMEs) or generalized linear mixed models (GLMMs) can also be used. For example,
Wu et al. [19] considered a nonlinear mixed-effects model for the longitudinal process and the Cox
proportional hazards model for the time-to-event process and applied it to an AIDS study by jointly
modeling HIV viral dynamics and time to viral rebound.

4.3 Informative Missingness

Since we acted under the assumption that the missingness was non-informative, the missing data
mechanism can be ignored in likelihood inference. But when there are informative dropouts (or non-
ignorable missing longitudinal responses), the missing data mechanism must be taken into account
for valid likelihood inference. Wu et al. [19] accounts for the missingness by assuming a missing
response model that allows the missing probability of missing to possibly depend on the random
effects a; and considered Monte Carlo EM algorithms and Laplace approximations.

4.4 A few more remarks

I went down various rabbit holes so I just wanted to briefly highlight some work that has been done
in this field that might be interesting to take a look at.

There has been work in considering other types of censoring such as interval censoring [20] where
we know the event occurs within some interval but we do not know when or left censoring where we
know the event occurred before a time point.

In class, we learned about LMEs vs GEEs so I was also curious to see if GEEs have been
considered and so I stumbled upon Zheng [23] who proposed in their dissertation "a joint gener-
alized estimating equation framework using an inverse intensity weighting approach for parameter
estimation from joint models".

One might naturally consider avoiding the topic of joint modeling by simply incorporating the
longitudinal measures directly into the Cox model as time-varying covariates and then proceed with
the Cox model analysis. However, because the longitudinal measures typically have a great deal of
random error from subject to subject, this approach will lead to highly biased (typically attenuated)
and inefficient estimates of the treatment effect [8].

Zhang et al. [22] proposed a new measure in the model fitting procedure. They made a new
decomposition of AIC and BIC (i.e., AIC = AICLong + AICSurv|Long and BIC = BICLong +



BICSurv|Long) to assess the fit of each component in the joint model as well as assess the fit of each
model separately.

In our case, we only considered one longitudinal covariate but people have also considered mul-
tivariate longitudinal data [6].

5 Data Application

We will consider an HIV study from [1] that was a randomized clinical trial in which both longitudinal
and survival data were collected to compare the efficacy and safety of two antiretroviral drugs (ddC
and ddI) in treating patients who had failed or were intolerant of zidovudine (AZT) therapy. CD4
cells are white blood cells that fight infection with higher CD4 counts indicating a stronger immune
system that is more prepared to resist infection while lower CD4 counts indicate a higher risk of
an infection. People have been interested and have looked at the association between the CD4 cell
count at time ¢ and risk of death at the same time.

This example was originally considered in [9] but in their application of joint modeling, they
only considered the joint modeling approach and compared it to the time-dependent Cox model.
We extend their application by also comparing it to two-stage model proposed by [17] as well as
the Bayes model using the JMbayes package [11]. They also fit the joint model using a piecewise-
baseline hazard but we will also change so that the baseline hazard is left unspecified to align with
the method proposed by [21].

We first consider the time-dependent Cox model where we also control for the treatment:

Ai(t) = No(t) exp(yddl; + ay;(t))

where ddl; is the dummy variable for the ddI group and y;(t) is the observed value of the CD4 cell
count. We also fit a two-stage model where we consider the following linear mixed effects model:

yz(t) = mz(t) + 6i(t) = By + Bit + ,Bg{t X ddli} + big + bt + Gi(t)

where By, 81 are the fixed effects of time and the interaction between time and treatment and b;g, b;1
are the random intercept and time effects. Then we plug in estimated values m;(t) into the Cox
model above for y;(t). Lastly, we also compute using the joint likelihood approach using the JM
package [10] and the JMbayes package [11].

Method CD4 Treatment (ddI)
Time-dependent -0.19 (0.024) 0.31 (0.15)
Two-Stage -0.22 (0.027) 0.31 (0.15)
Joint 20.27 (0.025) 0.32 (0.13)

Bayes 20.2972 (-0.39, -0.22)  0.33 (-0.06, 0.7)

Table 1: Parameter Estimates and Standard Errors (95% credible intervals shown for Bayes model)

Table 1 displays the estimates of the main parameters and their standard errors (credible intervals
for Bayes method). From Table 1, we see that the estimates are quite different, ranging from -0.19
t0 -0.29 on the log hazards scale. We can interpret the parameter estimate of CD4, say for the joint
model as such: For a one unit increase in CD4 cell count, it corresponds to a exp(-0.27) = 0.76-fold



decrease in the risk for death. The p-value also indicates it is significant so the joint model suggests
a strong association between CD4 cell count and the risk for death.

The joint model giving a larger estimate is consistent with [21] who reported slightly larger
parameter estimates in the joint model compared to the two-stage model. Wulfsohn et al. [21]
also reported larger standard errors in their application but here, we do not see the same pattern.
Rizopoulos [9] points out this may occur due to the fact that the standard errors calculated using
the JM package with the baseline hazard having no specification are underestimated. Rerunning
the joint model using a different baseline hazard gave a slightly different parameter estimate but
larger standard errors than the two-stage approach. Hsieh et al. [7] recommends a bootstrapped
based approach to deal with these underestimated standard errors. Overall, it seems that the time-
dependent and two-stage approaches underestimate not only the effect of CD4 but also the standard
errors themselves.

6 Conclusion

The joint modeling of longitudinal and survival data is quite an extensive field with various adapta-
tions and methods having been proposed for inference. We were motivated to perform joint modeling
under the suspicion that a longitudinal and an event process may be associated and discussed a few
ways to perform inference. A naive way to perform inference is to use the longitudinal data as a
time-dependent covariate in say a Cox model however this can lead to biased (typically attenuated)
estimates. We then moved on to consider two-staged models where we first fit the linear mixed effects
model followed by imputing those values into the survival model. This has the advantage of being
computationally less intensive and easily conducted using standard statistical software. However,
there are various biases that may arise as mentioned previously. Then we covered joint modeling,
which is the most widely used one today and one could also appeal to a Bayesian approach using
standard Bayesian estimation techniques as well.
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