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1 Introduction

Stochastic gradient descent (SGD) and its variants (Adam, Momentum, Adagrad) are widely

used in machine learning, especially in non-convex optimization tasks such as training neural

networks. Stochastic gradient descent itself is a modification of the gradient descent algo-

rithm. Recall that the gradient descent (GD) algorithm starts at point x0 ∈ Rd and we

iteratively update as:

xt+1 = xt − ηt∇f(xt)

where ηt is the step-size (also know as the learning rate).

From class, we’ve seen various extensions and alterations of this algorithm such as the

accelerated gradient descent. Stochastic gradient descent is one alternative approach to this

algorithm that is computed using a mini-batch of the data set. The mini-batch is a fixed

number of training examples that is less than the actual data set. Another view [6] of it is

as Gradient Descent with an unbiased noise inserted at every iteration, called the gradient

noise. Kleinberg et al. [4] in their paper defines it as:

xt+1 = xt − ηtvt

where vt is the stochastic gradient that satisfies E(vt) = ∇f(xt).

It has become quite popular due to having a nice trade off between accuracy and efficiency;

it requires more iterations to converge but fewer gradient evaluations per iteration compared

to the Gradient Descent. Motivated by the work done in Kleinberg et al. [4], the goal of this

paper is to examine how noise in Stochastic Gradient Descent can lead to better convergence

results, especially in a non-convex optimization context. It is my goal to briefly dive into the

exploration of the role of noise and its impact in various settings. Noise has been shown to
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help escape saddle points, provide better generalizations, and guarantee polynomial hitting

time of good local minima under some assumptions. Due to time and page constraints, this

literature review will briefly examine [4] and connect those ideas with a few contemporary and

emerging ideas in the analysis of noise in Stochastic Gradient Descent to better understand

how noise can help in non-convex optimization settings like neural networks.

2 Escaping Local Minima

Noise seems to play a crucial role in non-convex optimization, but back in 2018, it was

unclear why Stochastic Gradient Descent could converge to better local minima than Gra-

dient Descent in non-convex optimization problems. To tackle this issue, Kleinberg et al.

[4] demonstrated in their paper that Stochastic Gradient Descent was able to escape local

minima under certain properties and empirically showed those properties are common in

modern neural networks. As a brief summary, they take the alternative view of Stochastic

Gradient Descent that it is working on a convolved version of the loss function. And when

the convolved function is one point convex 1 with respect to the final solution x∗, Stochastic

Gradient Descent could escape all other local minima and stay around x∗ with constant

probability.

Consider the following example from their paper based on Figure 1 for some xt, that

instead of pointing to the solution x∗ (not shown), its negative gradient points to a bad local

1Kleinberg et al. define one-point convexity as ”If f is δ-one point strongly convex around x∗ in a convex
domain D, then x∗ is the only local minimum point in D.”
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minimum xo giving us yt = xt − η∇f(xt). But since we are performing Stochastic Gradient

Descent, the actual direction we take is −ηvt = −η(∇f(xt) + ωt) where ωt is the noise with

expectation 0 and follows some distribution W (xt). If we take a large enough step size, η,

we might get out of the basin region with the help of noise (from yt to xt+1 where getting

out of the basin region means xt+1 does not point to xo. Kleinberg et al. [4] continue by

considering the sequence yt → yt+1 where yt is defined as above. Note that the Stochastic

Gradient Descent algorithm never computes these vectors yt but they are being used as an

analysis tool. And from the equation xt+1 = yt − ηωt, we get the following update rule:

yt+1 = yt − ηωt − η∇f(yt − ηωt) (1)

Since the random vector ηωt has expectation 0, if we take the expectation of both sides,

we get that Eωt [yt+1] = yt − η∇Eωt [f(yt − ηωt)]. They then define gt(y) = Eωt [f(yt − ηωt)]

which is the original function f convolved with the η-scaled gradient noise, then one can

view the sequence yt as approximately doing gradient descent on the sequence of functions,

gt.

Using this alternative view can help us better understand why Stochastic Gradient De-

scent converges to a good local minimum even when f has many other sharp local minima
2. They argue that intuitively, the sharp local minima are eliminated by the convolution

operator that transforms f to gt, since convolutions have the effect of smoothing out short-

range fluctuations. Instead of imposing convexity or one-point convexity requirements on f

itself, they only require those properties to hold for the smoothed functions obtained from

the convolved f . They formalize this argument under the following assumption:

Assumption 1. For a fixed point x∗, noise distribution W (x), step size η, the function f is

c-one point strongly convex with respect to x∗ after convolved with noise. That is, for any x,

y in domain D such that y = x− η∇f(x),

⟨−∇Eω∈W (x)f(y − ηω), x∗ − y⟩ ≥ c∥x∗ − y∥22

They continue by arguing that for a point y, since the direction x∗ − y points to x∗, by

having a positive inner product with x∗ − y, we known the direction −η∇f(yt − ηωt) in (1)

approximately points to x∗ in expectation. And so, with decent probability, yt will converge

to x∗:

2As someone who’s extremely rudimentary in my machine learning knowledge and terminology. I like
this definition for sharp and flat local minima that works for our purposes from Dinh et al. [1], ”While the
concept of flat minima is not well defined, having slightly different meanings in different works, the intuition
is relatively simple. If one imagines the error as a one dimensional curve, a minimum is flat if there is a wide
region around it with roughly the same error, otherwise the minimum is sharp.”
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Theorem 1. Assume f is smooth, for every x ∈ D, W (x) s.t. maxω∼W (x) ∥ω∥2 ≤ r. Also

assume η is bounded by a constant, and assume Assumption 1 with x∗, η, c. For T1 ≥ Õ( 1
ηc
)3,

and any T2 > 0, with probability at least 1/2 we have ∥x∗− y∥22 ≤ O(log(T2)
ηr2

c
for any t s.t.

T1 + T2 ≥ t ≥ T1.

This theorem says that the Stochastic Gradient Descent will get close to x∗, but also stays

with constant probability that the Stochastic Gradient descent will stay close to x∗ for future

T2 steps. Since sharp local minima have smaller loss values and smaller diameters than flat

minima, after convolved with the noise kernel, they disappear which means Assumption 1

holds. On the other hand, flat local minima have larger diameters, so they still exist after

the convolution. In that instance, the theorem that states the Stochastic Gradient Descent

algorithm will more likely converge to the flat local minima and this is important because it

is hypothesized that flat local minima may lead to better generalizations [3]. However, this

has been a contentious topic as Dinh et al. [1] argues based on the idea that the definition

behind flatness is more nuanced that we had initially described. As well as Zhou et al. [8]

who claims ”local optima do not necessarily guarantee generalization”.

They also provide another simple example that better illustrates this alternative view.

Consider the following Figure 3 taken from their paper. The function f in the first row and

first column is approximately convex but spiky. So Gradient Descent gets stuck at various

local minima (row 2, col 1). By taking the alternative view that Stochastic Gradient Descent

works on the convolved f , (plots in row 1, column 2,3, and 4), we see that these functions

are smoother and have less local minima.

3In their paper, they use Õ to hide the log terms here so I’m not quite sure what the complexity is.
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They lastly provide some empirical observations and suggest that modern neural net-

works have many nice one point convex properties needed for their theorem to explain why

Stochastic Gradient Descent works well in practice.

3 Other works and remarks

While Kleinberg et al. [4] showed Stochastic Gradient Descent works well under certain

assumptions, Zhou et al. [8] argue that this is an ”unconventional assumption” and they

provide no theoretical evidence showing that this ”complicated assumption” holds when us-

ing Stochastic Gradient Descent in a non-convex optimization problem. Prompted by this

critique, we were interested to see under what assumption of alternative views have been pro-

posed to demonstrate the utility of Stochastic Gradient descent in non-convex optimization

problems.

More recently, Ibayashi et al. [2] in 2021 demonstrated that Stochastic Gradient De-

scent escapes from sharp minima exponentially fast even before Stochastic Gradient Descent
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reaches a stationary distribution. In their paper, they proposed a theory to tackle the

question as to why Stochastic Gradient Descent finds generalizable solutions in complicated

models such as neural networks. They frame their question in terms of ”escape efficiency

from sharp minima”. This ”escape efficiency” is a measure for how fast the Stochastic Gra-

dient Descent moves out of the neighborhood of the minima. In other words, Stochastic

Gradient Descent can find generalizable minima because it has high escape efficiency. The

concept of high escape efficiency is realized by the concept of ”anisotropic noise” in Stochastic

Gradient Descent [9] (the authors define it as the noise with the various magnitudes among

directions). Additionally, Xie et al. [7] proposed a density diffusion theory that Stochastic

Gradient Descent favors flat minima exponentially more than sharp minima. I did not dive

too in-depth into these papers as I wanted to simply understand the research contour and

what people are doing in this field to either prove or empirically demonstrate the usefulness

of Stochastic Gradient Descent.

While noise has been studied and shown to have nice properties, step size also players a

role in the popularity of Stochastic Gradient Descent and it would be remiss of me to not

at least make note of it. In optimization, small step sizes can help refine the network and

converge to a local minima while large step sizes can help in escaping local minima and point

towards better ones. Kleinberg et al. [4] in addition to exploring the effect of gradient noise,

also show the importance of picking a good step size or having a training schedule that can

shrink the step size to escape bad local minima. And Mohtashami et al. [5] in response

to Kleinberg et al. [4] argue that the gradient noise is not completely sufficient enough to

explain its good convergence properties and that even after the noise, there still might be

regions that can only be avoided using a high learning rate. Xie et al. [7] also discussed in

their work the impact that a small step size or large batch training can impact training with

an observation that large batches have difficulty in searching flat minima efficiently under

realistic computational restraints.

Overall, there has been a lot of work to describe Stochastic Gradient Descent with mathe-

matical rigor. Often time, novel theories and strong assumptions have to be made to achieve

these properties and empirical observations are often used to back up the theories. In this

literature review, we discussed how viewing Stochastic Gradient Descent through a convo-

lution framework can help us better understand why Stochastic Gradient Descent may lead

to better generalizations through converging to flatter local minima. While this framework

requires strong assumptions that might not be met, its a step in the right direction in terms

of shedding light onto what these algorithms are doing in non-convex optimization problems.

We also discovered that noise was not the only impactful thing in Stochastic Gradient De-

scent but a careful consideration of step size or learning rate and batch size are also required.
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As we’ve learned in class, many optimizers consider an adaptive step size that gets smaller

as we get closer to the local minima to prevent it from bouncing around too much as well

as different batch sizes leading to different convergence results. A lot of work remains in

enumerating the properties of Stochastic Gradient Descent and understanding how it works,

but in light of that fact, this literature review hopes to provide one perspective as to why

Stochastic Gradient Descent is so popular.
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